
REINFORCEMENT LEARNING FOR
NON-STATIONARY PROBLEMS

A Dissertation Presented

by

YASH CHANDAK

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2022

Robert and Donna Manning College of
Information and Computer Sciences

© Copyright by Yash Chandak 2022

All Rights Reserved

REINFORCEMENT LEARNING FOR
NON-STATIONARY PROBLEMS

A Dissertation Presented

by

YASH CHANDAK

Approved as to style and content by:

Philip S. Thomas, Chair

Bruno Castro da Silva, Member

Shlomo Zilberstein, Member

Emma Brunskill, Member

James Allan, Chair of the Faculty
Robert and Donna Manning College of
Information and Computer Sciences

ABSTRACT

REINFORCEMENT LEARNING FOR
NON-STATIONARY PROBLEMS

MAY 2022

YASH CHANDAK

B.Tech., VELLORE INSTITUTE OF TECHNOLOGY, CHENNAI

M.Sc., UNIVERSITY MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Philip S. Thomas

Reinforcement learning (RL) has emerged as a general-purpose technique for

addressing problems involving sequential decision-making. However, most RL methods

are based upon the fundamental assumption that the transition dynamics and reward

functions are fixed, that is, the underlying Markov decision process is stationary.

This limits the applicability of such RL methods because real-world problems are

often subject to changes due to external factors (passive non-stationarity), or changes

induced by interactions with the system itself (active non-stationarity), or both

(hybrid non-stationarity). For example, personalized automated healthcare systems

and other automated human-computer interaction systems need to constantly account

for changes in human behavior and interests that occur over time. Further, when the

stakes associated with financial risks or human life are high, the cost associated with

iv

a false stationarity assumption may be unacceptable. In this work, we address several

challenges underlying (off-policy) policy evaluation, improvement, and safety amidst

such non-stationarities. Our approach merges ideas from reinforcement learning,

counterfactual reasoning, and time-series analysis.

When the stationarity assumption is violated, using existing algorithms may result

in a performance lag and false safety guarantees. This raises the question: how can we

use historical data to optimize for future scenarios? To address this challenges in the

presence of passive non-stationarity, we show how future performance of a policy can

be evaluated using a forecast obtained by fitting a curve to counter-factual estimates

of policy performances over time, without ever directly modeling the underlying

non-stationarity. We show that this approach further enables policy improvement to

proactively search for a good future policy by leveraging a policy gradient algorithm

that maximizes a forecast of future performance. Building upon these advances, we

present a Seldonian algorithm that provides the first steps towards ensuring safety,

with high confidence, for smoothly-varying non-stationary decision problems.

The presence of active and hybrid non-stationarity pose additional challenges by

exposing a completely new feedback loop that allows an agent to potentially control

the non-stationary aspects of the environment. This makes the outcomes of future

decisions dependent on all of the past interactions, thereby resulting in effectively a

single lifelong sequence of decisions. We propose a method that provides the first steps

towards a general procedure for on-policy and off-policy evaluation amidst structured

changes due to active, passive, or hybrid non-stationarity.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Contributions . 3
1.2 Layout . 4

2. BACKGROUND AND RELATED WORK .6

2.1 Roots of the Problem . 6
2.2 Partially Observable Markov Decision Processes . 7
2.3 Non-stationary Decision Processes . 9

2.3.1 Stationarity . 10
2.3.2 Passive Non-stationarity . 11
2.3.3 Active (Action-dependent) and Hybrid Non-stationarity 11

2.4 Related Work . 12

2.4.1 (Stationary) POMDPs . 12
2.4.2 Algorithmic Non-stationarity in Stationary Domains 14
2.4.3 Meta and Continual Learning . 14
2.4.4 Multi-Agent Systems and Games . 16
2.4.5 Hidden-Parameter MDP . 17
2.4.6 Tracking . 17
2.4.7 One-step Decision Making . 18
2.4.8 Operations Research . 19

vi

3. OPTIMIZING FOR THE FUTURE . 20

3.1 Notation . 22
3.2 Problem Statement . 22
3.3 Background and Preliminaries . 23

3.3.1 Related Work . 23
3.3.2 Per-decision Importance Sampling . 24
3.3.3 Weighted Importance Sampling . 25

3.4 Optimizing for the Future . 25

3.4.1 Forecasting Future Performance . 26
3.4.2 Differentiating Forecasted Future Performance 29
3.4.3 Algorithm . 32
3.4.4 Understanding the Behavior of Prognosticator 33
3.4.5 Mitigating Variance . 35

3.5 Generalizing to the Stationary Setting . 37
3.6 Empirical Analysis . 40

3.6.1 Environments . 40
3.6.2 Algorithms Compared . 43
3.6.3 Hyper-parameters . 43
3.6.4 Results . 45
3.6.5 Computational Complexity (Memory and Time) 47
3.6.6 Ablation Study . 47
3.6.7 Performance Over Time . 48

3.7 Conclusion . 49
3.8 Limitations and Future Work . 49
3.9 Proofs . 52

3.9.1 Finite Sample Properties . 53
3.9.2 Large Sample Properties . 57

4. TOWARDS SAFE POLICY IMPROVEMENT . 62

4.1 Notation . 65
4.2 Problem Statement . 67
4.3 Background and Preliminaries . 67

4.3.1 Related Work . 68
4.3.2 Wild Bootstrap . 68

4.4 Hardness of the Problem . 70

vii

4.4.1 An Alternate Assumption . 71

4.5 SPIN: Safe Policy Improvement for Non-Stationary Settings 73

4.5.1 Performance Estimation . 74
4.5.2 Safety Test . 75
4.5.3 Candidate Policy Search . 75
4.5.4 Data-Splitting: . 76

4.6 Estimating Confidence Intervals for Future Performance 76

4.6.1 Point Estimate of Future Performance . 77
4.6.2 Confidence Intervals for Future Performance 77
4.6.3 Extended Discussion on Bootstrap . 81

4.6.3.1 Why Not Use Other Bootstrap Methods? 81
4.6.3.2 Why Not Use Standard t-test? . 81

4.7 Algorithm . 82
4.8 Empirical Analysis . 90

4.8.1 Domains . 90
4.8.2 Baseline . 91
4.8.3 Hyper-parameters . 92
4.8.4 Results . 93
4.8.5 Discussion on Results . 95

4.9 Conclusion . 97
4.10 Limitations and Future Work . 97
4.11 Proofs . 99

4.11.1 Hardness Results . 99
4.11.2 Uncertainty Estimation . 104

5. ACTION-DEPENDENT NON-STATIONARITY 110

5.1 Notation . 113
5.2 Problem Statement: . 114
5.3 Related Work . 115
5.4 Understanding Structural Assumptions . 117
5.5 Idea in a Nutshell . 122
5.6 Model-Free Policy Evaluation . 123

5.6.1 Counterfactual Reasoning . 123
5.6.2 Double Counterfactual Reasoning . 124
5.6.3 Importance Weighted IV-Regression . 126

viii

5.7 Empirical Analysis . 131

5.7.1 Environments . 131
5.7.2 Algorithms Compared . 134
5.7.3 Implementation and Hyper-parameters . 135
5.7.4 Results for Active/Hybrid Non-stationarity 138

5.7.4.1 Single Run . 138
5.7.4.2 Summary Plots . 138

5.7.5 Results for Passive Non-stationarity . 143

5.7.5.1 Single Run . 143
5.7.5.2 Summary Plots . 143

5.7.6 Ablation Study . 147

5.8 Conclusion . 148
5.9 Limitations and Future Work . 148
5.10 Proofs . 149

5.10.1 Double Counterfactual Reasoning . 149
5.10.2 Importance-Weighted IV-Regression . 152

6. CONCLUSION AND FUTURE WORK . 162

6.1 Future Work . 163

BIBLIOGRAPHY . 166

ix

LIST OF TABLES

Table Page

3.1 let Ψt
i = ∂ log πθ(O

t
i , A

t
i)/∂θ. This table represents all the terms in 3.9

required for computing ∇Ĵi(θ). Gray color denotes empty cells. 31

4.1 List of symbols used in this chapter, and their associated meanings. 65

4.2 List of symbols used in this chapter, and their associated meanings. 66

4.3 Here, N and η represents the number of gradient steps, and the
learning rate used while performing Line 14 of Algorithm 4. The
dimension of Fourier basis is given by d. Notice that d is set to
different values to provide results for different settings where SPIN
is incapable of modeling the performance trend of policies exactly,
and thus Assumption 3 is violated. This resembles practical
settings, where it is not possible to exactly know the true
underlying trend–it can only be coarsely approximated. 93

4.4 Ablation study on the RecoSys domain. Top row corresponds to
different speeds. (Left) Algorithm and the train-test split ratios.
(Middle) Amount of performance improvement over πsafe. (Right)
Safety violation percentage. Rows (iii) and (vi) correspond to
results in Figure 4.5. 97

x

LIST OF FIGURES

Figure Page

2.1 (Left) Control graph for interaction in a stationary POMDP, where
each column corresponds to one time step. Here, independent
episodes from the same POMDP can be resampled using µ.
(Right) Control graph that we consider for a non-stationary
decision process, where each column corresponds to one episode.
Here, the agent interacts with a sequence of related POMDPs. In
the absence of red arrows, the change from Mi to Mi+1 is
independent of the past decisions and is governed only by external
factors (passive non-stationarity). Presence of red arrows indicate
that Mi+1 can also be dependent on the past decisions made in Mi

(active non-stationarity). 10

3.1 An illustration, where the blue and red filled circles represent estimates
of the performances of policies π1 and π2 at different episodes in
the past, using data collected from a given policy β. The open
circles represent the forecasted performance of π1 and π2 estimated
by fitting a curve on the past performance estimates. 27

3.2 The proposed method from the lens of differentiable programming. At
any time k, we aim to optimize the policy’s parameters, θ, to
maximize its performance in the future, i.e., to maximize Jk+1(θ).
However, conventional methods (dotted arrows) can not be used to
directly optimize for this. In this work, we achieve this as a
composition of two programs: one which connects the policy’s
parameters to its past performances, and the other which forecasts
future performance as a function of these past performances. The
optimization procedure then corresponds to taking derivatives
through this composition of programs to update policy parameters
in a direction that maximizes future performance. Arrows (a) and
(b) correspond to the respective terms marked in 3.7. 29

3.3 The value of weights ζi for all values of i ∈ [1, 99] using different
functions to encode the time index. Notice that many weights are
negative when using the identity or Fourier bases. 34

xi

3.4 Blood-glucose level of an in-silico patient for 24 hours (one episode).
Humps in the graph occur at times when a meal is consumed by
the patient. 39

3.5 Best performances of all the algorithms obtained by conducting a
hyper-parameter sweep over 2000 hyper-parameter combinations
per algorithm, per environment. For each hyper-parameter setting,
30 trials were executed for the recommender system and the goal
reacher environments. Error bars correspond to the standard error.
The x-axis represents how fast the environment is changing and the
y-axis represents regret (lower is better). 45

3.6 Best performances of all the algorithms obtained by conducting a
hyper-parameter sweep over 2000 hyper-parameter combinations
per algorithm, per environment. For each hyper-parameter setting,
10 trials for the diabetes treatment environment. Error bars
correspond to the standard error. The x-axis represents how fast
the environment is changing and the y-axis represents regret (lower
is better). 46

3.7 Best performances of all the algorithms for the non-stationary
recommender system environment, obtained by conducting a
hyper-parameter sweep over 1000 hyper-parameter combinations
per algorithm. For each hyper-parameter setting, 30 trials were
executed. Error bars correspond to the standard error. (Left)
Performance of Pro-OLS with Fourier, polynomial, and linear basis
functions. (Right) Performance of Pro-WLS with Fourier,
polynomial, and linear basis functions. 48

3.8 (Left) Fluctuations in the reward associated with each of the 5 items
that can be recommended, for different speeds. (Right) Running
mean of the best (among different hyper-parameters) performance
of all the algorithms for different speeds; higher total expected
return is better. Shaded regions correspond to the standard error
of the mean obtained using 30 trials. Notice the shape of the
performance curve for the proposed methods, which closely
captures the trend of the maximum reward attainable over time.
. 50

3.9 Running mean of the best performance of all the algorithms for
different speeds; higher total expected return is better. Shaded
regions correspond to the standard error of the mean obtained
using 30 trials for NS Goal Reacher and 10 trials for NS Diabetes
Treatment. 51

xii

4.1 An illustration of the proposed idea where safety is defined to ensure
that the future performance of a proposed policy πc is never worse
than that of an existing, known, safe policy πsafe. The gray dots
correspond to the returns, G(β), observed for a policy β. The red
and the blue dots correspond to the counterfactual estimates, Ĵ(πc)
and Ĵ(πsafe), for performance of πc and πsafe, respectively. The
shaded regions correspond to the uncertainty in future performance
obtained by analysing the trend of the counterfactual estimates for
past performances. 64

4.2 The proposed algorithm first partitions the initial data D1 into two
sets, namely Dtrain and Dtest. Subsequently, Dtrain is used to search
for a possible candidate policy πc that might improve the future
performance, and Dtest is used to perform a safety test on the
proposed candidate policy πc. The existing safe policy πsafe is only
updated if the proposed policy πc passes the safety test. 74

4.3 To search for a candidate policy πc, regression is first used to analyze
the trend of a given policy’s past performances. Wild bootstrap
then leverages Rademacher variables σ∗ and the errors from
regression to create pseudo-performances. Based on these
pseudo-performances, an empirical distribution of the pseudo
t-statistic, t∗, of the estimate of future performance, is obtained.
The candidate policy πc is found using a differentiation based
optimization procedure that maximizes the high-confidence lower
bound, Ĵ lb, computed using the empirical distribution of t∗. 82

4.4 Computational graph for obtaining ordered-statistics t∗∗. 88

4.5 (Top-left) An illustration of a typical learning curve. Notice that SPIN
updates a policy whenever there is room for a significant
improvement. (Middle and Right) As our main goal is to ensure
safety, while being robust to how a user of our algorithm sets the
hyper-parameters (HPs), we do not show results from the best HP.
This choice is motivated by the fact that best performances can
often be misleading as it only shows what an algorithm can achieve
and not what it is likely to achieve (Jordan et al., 2018; 2020).
Therefore, we present the aggregated results averaged over the
entire sweep of 1000 HPs per algorithm, per speed, per domain.
Shaded regions and intervals correspond to the standard error. 94

4.6 Example NS-MDP. 103

xiii

5.1 (Left) Control graph for interaction in a stationary POMDP, where
each column corresponds to one time step. Here, independent
episodes from the same POMDP can be resampled. (Right)
Control graph that we consider for a non-stationary decision
process, where each column corresponds to one episode. Here, the
agent interacts with a sequence of related POMDPs (Mi)

n
i=1. In

the absence of red arrows, the change from Mi to Mi+1 is
independent of the past decisions and is governed only by external
factors (passive non-stationarity). The presence of red arrows
indicated that Mi+1 can also be dependent on the past decisions
made in Mi (active non-stationarity). 115

5.2 Consider a robot that can perform a task each day either by ‘walking’
or ‘running’. A reward of 8 is obtained upon completion using
‘walking’, but ‘running’ finishes the task quickly and results in a
reward of 10. However, ‘running’ wears out the motors, thereby
increasing the time to finish the task the next day and reduces the
returns for both ‘walking’ and ‘running’ by a small factor,
α ∈ (0, 1). Here, methods for tackling passive non-stationarity will
track the best policy under the assumption that the changes due to
damages are because of external factors and would fail to attribute
the cause of damage to the agent’s decisions. Therefore, as on any
given day ’running’ will always be better, every day these methods
will prefer ’running’ over ’walking’ and thus aggravate the damage.
Since the outcome on each day is dependent on decisions made
during previous days (active non-stationarity) this is effectively a
task with a single lifelong episode, where ‘walking’ might be better
in the long run. Finding a better policy first requires a method to
evaluate a policy’s (future) performance, which is the focus of this
work. 116

xiv

5.3 (Left) Considering structured changes in z (blue arrow) might often
be more intuitive. However, as J(π) estimation is ultimately
required, unless performance of a policy also has some structure
(green arrows) given z, generalizing across (potentially unseen) z’s
may not be possible. Structured changes for blue and green arrows
consequently results in structured changes in J(π) (dashed-blue
arrows). For example, if the performance J(π) of a policy changes
(Lipschitz) smoothly with z, then smooth changes between z values
automatically also imply smooth changes between J(π) values.
(Right) When executing a policy π, say z changes as zi = i, and
Ji(π) changes periodically as sin(zi). Here, even though both z and
J change smoothly, changes in zi+1 can be modeled using one past
term (i.e, zi), but changes in Ji+1(π) cannot be modeled only using
Ji(π) (which we denote as p = 1). Making F a function of the past
J(π) sequence (here, Ji(π) and Ji−1(π), denoted as p = 2) can
alleviate such issues. 120

5.4 In this figure we plot different kinds of performance trends and discuss
the applicability of Assumption 5 for each. The red curve
corresponds to the forecast obtained using an auto-regressive
model. (Left) In many cases where the performance of a policy is
smoothly changing over time (for e.g., drifts in interests of an user
that a recommender system needs to account for), looking at the
past performances can often provide indication of how the
performance would evolve in the future. (Middle) Changes in
performances does not necessarily have to be smooth. What
Assumption 5 enforces is that the changes have some structure
which can be generalized to make predictions about how the
performance would change in the future. Here, the performance
jumps between different values (for e.g., if there is discontinuous
change in the underlying system), but till their is some structure in
the changes, it can be leveraged to make predictions about the
future performances as well. (Right) While Assumption 5 can be
applicable in many setting, there can be settings where this
assumption does not hold. For example, if a motor of an industrial
system is degrading over time but this degradation has no effect on
the observable performance, until the point when the motor breaks
down and the performance drops completely. In such cases, just
looking at past performances may not be sufficient to infer how
performance will change in the future. 121

5.5 A high-level illustration of the proposed approach for estimating
J (π). As we are only evaluating a particular policy π, we have
removed the explicit dependence of π on both F and ϕ for a
cleaner illustration. 122

xv

5.6 An illustrative step by step breakdown of the stages in the proposed
algorithm OPEN for the RoboToy-Active domain. 139

5.7 Comparison of different algorithms for predicting the future
performance of evaluation policy π on domains that exhibit
active/hybrid non-stationarity. On the x-axis is the speed which
corresponds to the rate of non-stationarity; higher speed indicates
faster rate of change and a speed of zero indicates stationary
domain. On the y-axis is the absolute bias in the performance
estimate (lower is better). For each domain, for each speed, for
each algorithm, 30 trials were executed. Discussions for these plots
can be found in Section 5.7.4.2.1. Here, |bias| was computed using
the absolute value of the difference between (a) the predicted
future performance averaged across 30 trials and (b) the ground
truth future performance. That is, for an estimator Ĵ of J , the bias
is |J − E[Ĵ]|. Because of this, 30 trials only gives us a point
estimate for bias. (Notice that using the absolute value of the
difference between (a) the predicted future performance for each
trial and (b) the true future performance’, averaged across 30 trials,
will provide an estimate of E[|J − Ĵ |], which would not capture the
bias but will be more like the variance (using L1/absolute distance
instead of L2)). 140

5.8 Comparison of different algorithms for predicting the future
performance of evaluation policy π on domains that exhibit
active/hybrid non-stationarity. On the x-axis is the speed which
corresponds to the rate of non-stationarity; higher speed indicates
faster rate of change and a speed of zero indicates stationary
domain. On the y-axis is the mean squared error (MSE) in the
performance estimate (lower is better). For each domain, for
each speed, for each algorithm, 30 trials were executed. Discussions
for these plots can be found in Section 5.7.4.2.2. 141

5.9 An illustrative step by step breakdown of the stages in the proposed
algorithm OPEN for the RoboToy-Passive domain. 145

xvi

5.10 Comparison of different algorithms for predicting the future
performance of evaluation policy π on domains that exhibit passive
non-stationarity. On the x-axis is the speed, which corresponds to
the rate of non-stationarity; higher speed indicates a faster rate of
change and a speed of zero indicates a stationary domain. (TOP)
On the y-axis is the absolute bias in the performance estimate.
(Bottom) On the y-axis is the mean squared error (MSE) in the
performance estimate. Lower is better for all of these plots. For
each domain, for each speed, for each algorithm, 30 trials were
executed. Discussion of these plots can be found in Section
5.7.5. 146

5.11 (Top) Absolute bias in prediction of Pro-WLS for different choices of
its hyper-parameter. (Bottom) Absolute bias in prediction of
OPEN for different choices of its hyper-parameter. For all the plots,
lower value is better. Overall, we observe that OPEN being an
auto-regressive method can extrapolate/forecast better and is thus
more robust to hyper-parameters than Pro-WLS that uses Fourier
bases for regression and is not as good for extrapolation. 147

xvii

CHAPTER 1

INTRODUCTION

Intelligence is the ability to adapt to
change.

Stephen Hawkinsm

Throughout the history of evolution it can be observed that a hallmark of in-

telligence has been the ability to adapt to changes. As we strive to build systems

that exhibit characteristics of intelligence, an important research challenge is to de-

velop methods that can autonomously adapt to and proactively reason about changes

that will occur in the future. This dissertation takes a step towards addressing this

challenge.

One need not have a vivid imagination to see the advantages of AI systems that

showcase such characteristics. Even current basic AI systems have enormous potential,

and the way we address this challenge will pave the way for future AI systems. For

example, in recent years, there has been a surge of interest in developing automated

sequential decision making algorithms for a wide variety of real-world applications.

To highlight one, consider prior work that proposed using sequential decision making

methods to provide automated healthcare for patients (Yu et al., 2019). Because it is

such a high-stakes application, researchers have also proposed developing methods

that provide high-confidence safety guarantees on the performance of such algorithms

(Thomas et al., 2019a). While these methods open exciting new avenues towards

high-impact applications, it is vital to understand the assumptions made in these works.

Particularly, the results established by prior works rely on the assumption that the

problem is stationary, i.e., (a) when considering patients individually, the physiology

1

https://www.telegraph.co.uk/news/science/stephen-hawking/12088816/Professor-Stephen-Hawking-13-of-his-most-inspirational-quotes.html

and behavior of the patient remains fixed across days, or (b) when considering the

patient population, healthcare facilities and public health remain fixed across time.

Is this assumption valid for such real-world problems? If not, what are the

consequences for a patient when algorithms blindly rely on such assumptions?

Clearly such assumptions of stationarity are often violated. (a) When considering

patients individually, notice that age is an important aspect that changes constantly,

never returning to a previous value. This results in changes in physiology and behavior

of a patient with age. (b) At the population level, when considering data collected

over extended periods, not only do healthcare facilities change over time, but public

health also continuously evolves based on the treatments made available in the past.

Violations of the stationarity assumption can be observed across a plethora of

applications. For example, many medical support systems for the treatment of

health problems like type-1 diabetes (Bastani, 2014), sepsis (Saria, 2018), HIV (Ernst

et al., 2006), etc. involve sequential decision making under conditions similar to those

discussed above. Given the high stakes of such applications, the cost associated with

a false stationarity assumption may be unacceptable, necessitating the development of

algorithms that can adequately account for non-stationarity. Further, almost all human-

computer interaction systems have a common non-stationary component: humans.

In tutoring systems, a student’s behavior changes over time. For personalized music

and video recommendation systems, a user’s interests change. In driving assistance

systems, a driver’s response to warnings changes depending on how frequently the

system correctly and incorrectly alerts the driver. In robotic control applications,

motors and joints suffer wear and tear over time that can change the dynamics of a

robot. Lastly, power management systems need to account for non-stationarity at

multiple scales for power supply and demand, ranging from day-night fluctuations to

weekday-weekend fluctuations, to yearly seasonal fluctuations.

2

These examples capture the broad idea that for a system that is deployed in

the real world, parts of the problem specification change over time, and will violate

the stationarity assumption. The goal of this dissertation is to address challenges

that stem from non-stationarity and develop methods that inform an array of such

applications.

1.1 Contributions

This dissertation makes three main contributions, each organized as a chapter.

1. The primary contribution of Chapter 3 is to present a Prognosticator procedure

that, in the presence of structured non-stationarity due to external factors, can

(a) provide a model-free estimate of the performance of a policy if that policy

were to be deployed in the future, and (b) proactively search for a good future

policy through a gradient based procedure that maximizes estimates of the future

performance. Perhaps surprisingly, we observe that minimizing performance

at some times in the past can be beneficial when searching for a policy that

maximizes future performance. We also show how Prognosticator is an unbiased

and a strongly consistent estimator in the stationary setting, thereby generalizing

several existing methods for the stationary setting.

2. The primary contribution of Chapter 4 is to formalize the conditions under

which safety1 can be ensured in the presence of structured non-stationarity due

to external factors. Under these conditions we propose SPIN, the first procedure

for safe policy improvement under such non-stationarities. SPIN first constructs

asymptotically valid confidence intervals of a policy’s future performance and

1Safety has many definitions in the literature. Later we formally define what safety means in this
dissertation. In short, we say an algorithm is safe if it provides a high-confidence guarantee that it
will only change the current policy when doing so would increase the expected discounted return in
the future.

3

then searches for a policy that maximizes the lower bound obtained from this

confidence interval. Empirically, we observe that SPIN provides safe policy

improvement even in the finite sample setting and even when the structure

resulting from non-stationarity is misspecified. In comparison, existing methods

for ensuring safety that do not account for non-stationarity result in up to five

times more unsafe behavior than desired.

3. The primary contribution of Chapter 5 is to account for a more general class

of non-stationarity, where the changes may occur due to both external factors

and due to the past decisions made by the agent. This setting is particularly

challenging as it exposes a completely new feedback loop that allows an agent

to influence and control the non-stationary aspects of the environment. In this

setting, we formalize the fundamental problem of (off-policy) policy evaluation,

establish additional assumptions for tractability, and propose a method, OPEN,

to address this challenge. OPEN presents the first steps towards a unified

procedure that can tackle general forms of structured non-stationarities (while

remaining effective in the stationary setting).

1.2 Layout

The remainder of this dissertation is structured as follows,

• Chapter 2 (Background and Related Work) This chapter provides background

on different types of non-stationarities and the roots of the challenges that arise

when dealing with non-stationary problems. It also sets up notation relevant

for all of the subsequent chapters and discusses work related to the overarching

topic of non-stationarity.

• Chapter 3 (Optimizing for the Future) This chapter first reviews existing work

on off-policy evaluation in the stationary setting and then introduces the core

4

idea for how the stationary methods can be generalized to the non-stationary

setting. The ideas developed in this chapter are foundational and form the

pre-requisite for the following chapters.

• Chapter 4 (Towards Safe Policy Improvement) This chapter reviews existing

literature for ensuring safety in the stationary setting and techniques for obtaining

confidence intervals for time-series. The proposed method merges concepts from

these past methods with the foundations laid in Chapter 3. Subsequent chapters

remain coherent if this chapter is skipped.

• Chapter 5 (Action-dependent Non-stationarity) Building upon the foundations

laid in Chapter 3, this chapter proposes a generalized method to tackle different

forms of structured non-stationarity. The contributions in this chapter are the

culmination of this thesis.

• Chapter 6 (Conclusion and Future Work) This brief chapter summarizes the

dissertation and proposes directions for future research.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter first discusses the roots of the problems that stem from non-stationarity

and introduces the notation for non-stationary decision processes that will be used

throughout this dissertation. We then summarize prior work related to the overarching

problem of non-stationarity.

2.1 Roots of the Problem

Reinforcement learning (RL) approaches have emerged as a ubiquitous class of

methods for tackling decision-making problems. However, the foundations of RL

are built upon the assumption that the problem specification is stationary. That is,

RL work typically assumes that a decision always results in the same (distribution

of) consequence(s) when taken at any given state. While this assumption was a

cornerstone when laying the theoretical foundations of the field and developing initial

RL algorithms, it is rarely true for real-world problems. Hence, it is imperative that

we remove this assumption if we hope to transition towards practical algorithms.

However, being such a fundamental assumption, it is so deeply rooted within the

current state-of-the-art methods that it is often not even explicitly mentioned.

To understand the roots of this problem, let us revisit the use of RL algorithms

for type 1 diabetes management (Bastani, 2014). For this application, the RL agent

must decide how much insulin should be injected to keep a patient’s blood glucose

levels near-ideal levels. Unfortunately, successful use of popular RL algorithms here is

contingent on one of the following two instantiations of the stationarity assumption:

6

(a) existence of a fixed resetting procedure for sampling independent episodes, or (b)

existence of a stationary distribution for the Markov chain induced by executing any

policy. For the first condition, when considering treatment for a single patient, one

way for resetting might be to consider each day as a single episode (Thomas et al.,

2019a). However, because the blood glucose level at any day is dependent on the

insulin injected during the previous day, the independence assumption is violated.

Additionally, as human physiology keeps changing with age, the effective transition

dynamics for the Markov chain induced by any decision making rule keeps changing.

This further inhibits any policy from reaching a stationary distribution during a

patient’s lifetime, thereby violating the second condition as well.

2.2 Partially Observable Markov Decision Processes

In this dissertation, random variables are denoted using capital letters and sets are

denoted using calligraphic letters. For example, X ∈ X , is a random variable taking

on values in the set X with |X | elements. Below we define common functions used in

this dissertation.

Throughout the dissertation, for simplicity of notation, we will consider partially ob-

servable Markov decision process (POMDPs), defined by the tuple (S,A,O,O,P,R, µ)

with which an agent interacts for a finite number of time steps T (Kaelbling et al., 1998).

Here S is the set of states, A is the set of actions, and O is the set of observations.

While all of our results extend to the setting where the state set S, observation set O,

and the action set A are continuous (or of infinite cardinality), we assume that these

sets are finite for notational simplicity. When an agent interacts with an environment

modeled as a POMDP, St ∈ S, Ot ∈ O, At ∈ A, and Rt ∈ R correspond to the random

variables for the state, observation, action, and reward at time step t ∈ {0, 1, ..., T}.

The function O : S × O → [0, 1] is the observation function which (stochastically)

maps states to observations, i.e., O(s, o) := Pr(Ot = o|St = s). The transition function

7

P : S ×A× S → [0, 1] specifies the probability of the agent transitioning to a state

s′ when taking action a in state s, i.e., P(s, a, s′) := Pr(St+1 = s′|St = s, At = a).

The reward distribution R : S × A× S ×R → [0, 1], specifies the distribution over

rewards the agent receives for taking action a in state s, and transitioning to s′, i.e.,

R(s, a, s′, r) = Pr(Rt = r|St = s, At = a, St+1 = s′), where R ⊆ [−Rmax, Rmax] for

some finite constant Rmax.1 The initial state distribution is defined by µ : S → [0, 1],

i.e., µ(s) = Pr(S0 = s).

The interaction proceeds as the following: S0 is sampled from µ and mapped to

O0 using the observation function O. The agent uses Ot, for all t ∈ {0, 1, ..., T}. On

executing action At, St transitions to state St+1 under the transition dynamics P,

and the agent is provided with a reward Rt generated using R and the observation

Ot+1. After T steps of interaction, the state is reset to a starting state using µ and

the entire process repeats. The method that an agent uses to select actions is called

a policy. We define a policy to be a function π : O ×A → [0, 1], which specifies the

probability of the agent taking actions a upon observing o, i.e., π(o, a) := Pr(At =

a|Ot = o). For policy optimization problems, the agent will use a parameterized policy

πθ : S ×A×Rn → [0, 1], which is also a function of d parameters θ ∈ Rd. For brevity

of notation and when clear from context, the parameters θ may be left implicit, e.g.,

Pr(At = a|Ot = o) = Pr(At = a|Ot = o; θ).

We call the discounted sum of rewards the return, i.e., G =
∑T

t=0 γ
tRt, where

γ ∈ [0, 1] is the discount factor. The start sate objective for a policy π at a given state

s is J(π) := Eπ[G], where the subscript of π denotes that π was used to select actions

during interaction with the POMDP.

1For notational simplicity, we assume that R(s, a, s′, ·) has finite support for all s, a, and s′. This
allows us to sum over possible trajectories and discuss probabilities of trajectories rather than using
the more general but complex measure theoretic notation for probability.

8

2.3 Non-stationary Decision Processes

We define a non-stationary decision process (NSDP) as a sequence of POMDPs.

Formally, let M be a finite set of POMDPs. The observation function Oi, the

transition function Pi, the reward function Ri, and the initial state distribution µi

may differ for each POMDP Mi. For clarity, we will use Ot
i , A

t
i, and Rt

i to denote the

random variables corresponding to the observation, action, and reward at timestep

t when the agent interacts with POMDP Mi. Let Hi := (St
i , O

t
i , A

t
i, R

t
i)

T
i=0 be the

entire sequence of interactions in Mi. Similarly, let Gi :=
∑T

t=0R
t
i be an observed

return and Ji(π) := Eπ[Gi|Mi] be the performance of π on Mi. Let H be the set

of possible interaction sequences, and finally let T : M×H ×M → [0, 1] be the

‘meta-transition’ function that governs the non-stationarity in the POMDPs. That is,

T (m,h,m′) = Pr(Mi+1=m′|Mi=m,Hi=h).

The interaction with an NSDP proceeds as the following: Agent is first presented

with a POMDP M0, with which it interacts for T steps (one episode). Upon termination

of interaction with Mi, instead of resetting the state using the initial state distribution

of POMDP Mi, the state is reset using the initial state distribution µi+1 of the next

POMDP Mi+1, and the process continues. In other words, i indexes the episode

and there is a different POMDP for each episode, i.e., Mi is the POMDP the agent

interacts with during episode i. Importantly, this is a lifelong process which need not

ever reset back to M0.

We provide an illustration of the control process in Figure 2.1. In the stationary

POMDP setting, resampling from the starting state distribution permits interacting

with the same POMDP multiple times, making finding a policy that is effective in

the future possible. However, for an NSDP learning a good policy for the future, or

even evaluating a policy’s future performance, would be intractable without additional

assumptions, as the future POMDP could be arbitrary and very different from the

POMDPs the agent has interacted with so far. To make the problem tractable, we

9

- Allows resampling
+ No structural assumptions

+ No resampling possible
- Structural assumptions

Stationary decision process Non-stationary decision process

Figure 2.1. (Left) Control graph for interaction in a stationary POMDP, where
each column corresponds to one time step. Here, independent episodes from the same
POMDP can be resampled using µ. (Right) Control graph that we consider for a
non-stationary decision process, where each column corresponds to one episode. Here,
the agent interacts with a sequence of related POMDPs. In the absence of red arrows,
the change from Mi to Mi+1 is independent of the past decisions and is governed only
by external factors (passive non-stationarity). Presence of red arrows indicate that
Mi+1 can also be dependent on the past decisions made in Mi (active non-stationarity).

will need some structural assumptions on the POMDPs that will enable an agent to

use data from past interactions to infer potential outcomes in the future. We will

discuss such structural assumptions in the later chapters.

Using terminology introduced by Khetarpal et al. (2020), non-stationarity can

be further categorized as passive, active or hybrid. Below we provide intuitive and

mathematical formulations of these three settings (as well as the stationary setting).

2.3.1 Stationarity

It can be immediately observed that the stationary POMDP setting is a special

case of the NSDP setting. Specifically, when the size of the set of possible POMDPs

|M| = 1, then

∀i, j > 0, Mi = Mj,

10

and all Hi’s are sampled from the same POMDP. Further, if Ot = St for all t then the

setting reduces to the stationary Markov decision process (MDP) setting (Puterman,

1990; Sutton and Barto, 2018b).

2.3.2 Passive Non-stationarity

When the non-stationarity is caused only by external (exogenous) factors, then

we refer to it as passive non-stationarity. That is, an agent’s interactions with past

POMDPs do not influence the POMDPs that the agent will face in the future. Formally,

regardless of which policy is used to select actions,

∀(m,m′) ∈M2,∀(h, h′) ∈ H2, T (m,h,m′) = T (m,h′,m′). (2.1)

For example, consider a product recommendation system interacting with a user

(Theocharous et al., 2020). If the interactions during each day i are interactions with

POMDP Mi, i.e., each day corresponds to an episode, then seasonal changes across

days that cause change in the user’s interests for different products result in passive

non-stationarity. As another example, consider social media platforms that provide

personalised content recommendations to its users. Because the relevance of content

constantly changes based on external events, e.g., elections and sporting events, the

recommender systems need to constantly account for the non-stationarity of the user’s

interests.

2.3.3 Active (Action-dependent) and Hybrid Non-stationarity

When the non-stationarity is dependent on the past interactions of the agent with

the environment, we refer to it as active (or action-dependent) non-stationarity. In

the most general form, non-stationarity can be dependent on both external changes

and past interactions of the agent. We refer to this general form of non-stationarity

11

as hybrid non-stationarity, which is modeled by the meta-transition function T :

M×H×M→ [0, 1] without additional restrictions like (2.1).

As an example of hybrid non-stationarity, social media platforms need to constantly

account for the partisan biases of their users that changes not only due to both external

political developments but also from increased self-validation resulting from previous

posts/ads suggested by the recommender system itself (Cinelli et al., 2021; Gillani

et al., 2018).

2.4 Related Work

In the following we summarize various related directions that fall under the

overarching topic of non-stationarity in reinforcement learning. A more exhaustive

survey can be found in the works by Padakandla (2020) and Khetarpal et al. (2020).

2.4.1 (Stationary) POMDPs

It might often seem natural to consider the factors that induce non-stationarity

(e.g., body’s glucose absorption rate during automated diabetes treatment as that

rate changes with age, or a user’s partisan bias during social media recommendations)

as an unobserved variable and model the problem as a partially-observable Markov

decision process (POMDPs). While a general POMDP might be adequate to model

the problem setup, wherein the agent’s interactions with the environment correspond

to one long episode, often the end goal is not to model the problem but to obtain an

optimal policy for it (or provide safety guarantees, etc.). Consequently, searching for an

optimal policy requires a policy search algorithm. Unfortunately, the success of these

search algorithms is typically contingent on the additional stationarity assumption

that either independent episodes can be sampled, or transitions from a stationary

distribution can be sampled (Ghavamzadeh et al., 2016). Neither of these is true when

a non-stationary episodic problem is modeled as a POMDP with one long episode.

12

Therefore, just modeling the problem as a general POMDP is not sufficient to tackle

non-stationarity, unless we also have algorithms that do not rely upon stationarity

of the initial state distribution, transition function, and/or reward function across

episodes.

For instance, in the episodic setting, a typical POMDP would require that the

starting state is drawn i.i.d. from a fixed distribution. In the diabetes treatment

example above, where the body’s glucose absorption rate is the unobserved variable, a

fixed starting state distribution would imply that the glucose absorption rate is drawn

i.i.d. at the start of the episode. However, as the patient’s physiology changes with

age and induces non-stationarity, this i.i.d. condition may be invalid as the glucose

absorption rate will constantly drift across time.

In contrast, instead of the episodic setting, it might be natural to consider the

continuing/average-reward setting as well. Typically, this setting requires assumptions

of ergodicity (Puterman, 1990) of the domain such that the Markov chain induced by

any policy reaches a stationary distribution. In the diabetes treatment example above

the patient’s physiology changes constantly with age and it is not possible to revisit a

past age, which results in violation of the ergodicity assumption.

Additionally, POMDP methods employ some procedure to infer the unobserved

variables to estimate the underlying true state. However, even if an oracle provides

access to the complete state (which includes the unobserved variables), it can be

observed that the above problems remain unadressed (as the starting states will not

be drawn i.i.d. in the episodic setting, nor will the ergodicty assumption hold in the

continuing setting). This problem is further exacerbated when only off-policy data

is available. Inferring unobserved variables of a POMDP in the off-policy setting

is equivalent to inferring latent confounders from observational data during causal

inference. Unless strong assumptions are made, it is known that it may not be possible

to consistently estimate the confounding variables even with infinite data (Pearl

13

et al., 2000). In this thesis, we will look at methods that never require inferring the

unobserved/confounding variables.

Further, in the non-stationary setting, not only the type of distribution over the

unobserved variable, but also the support of those distributions may change over

time, i.e., the system might encounter environments that have new values for the

unobserved variables. For example, In the diabetes treatment example above, with age

the patient’s blood glucose absorption rate might drift to values that the system might

not have encountered in the past. Tackling such settings would inevitably require the

ability to generalize. To models such settings, we build upon the (stationary) POMDP

setup and provide the setup for non-stationary decision processes in Chapter 2.3.

2.4.2 Algorithmic Non-stationarity in Stationary Domains

In the face of uncertainty, prior works often opt for exploratory or safe behavior by

acting optimistically or pessimistically, respectively. This is often achieved by using

the collected data to dynamically modify the observed rewards for any state-action

pair by either providing bonuses (Agarwal et al., 2020; Taiga et al., 2021) or penalties

(Buckman et al., 2020; Cetin and Celiktutan, 2021). One could view this as an instance

of active non-stationarity. Similarly, in temporal-difference (TD) methods the target

for the value function keeps changing and such changes are also dependent on the

data collected in the past (Sutton and Barto, 2018a). However, we note that such

non-stationarities are only artifacts of the learning algorithm as the underlying domain

remains stationary throughout. In contrast, the focus of our work is on settings where

the underlying domain is non-stationary.

2.4.3 Meta and Continual Learning

The problem of adapting to non-stationarity is also related to continual learning

(Ring, 1994), lifelong-learning (Thrun, 1998), and meta-learning (Schmidhuber, 1999).

Several meta-learning based approaches for fine-tuning a (mixture of) trained model(s)

14

using samples observed during a similar task at test time have been proposed (Naga-

bandi et al., 2018a;b). Other works have also shown how models of the environment

can be useful for continual learning (Lu et al., 2019) or for model predictive control

(Wagener et al., 2019).

A work that is more closely related (to our contribution in Chapter 3) is that

of Al-Shedivat et al. (2017). They consider a setting where an agent is required to

solve test tasks that have different transition dynamics than the training tasks. Using

meta-learning, they aim to use training tasks to find an initialization vector for the

policy parameters that can be quickly fine-tuned when facing tasks in the test set. In

many real-world problems, however, access to such independent training tasks may

not be available a priori. In this work, we are interested in the continually changing

setting where there is no boundary between training and testing tasks. As such, we

show how their proposed online adaptation technique that fine-tunes parameters, by

discarding past data and only using samples observed online, can create performance

lag and can therefore be data-inefficient. In settings where training and testing tasks

do exist, our method can be leveraged to better adapt during test time, starting from

any desired parameter vector.

Recent work by Finn et al. (2019) aims at bridging both the continuously changing

setting and the train-test setting for supervised-learning problems. They propose

continuously improving an underlying parameter initialization vector and running

a Follow-The-Leader (FTL) algorithm (Shalev-Shwartz et al., 2012) every time new

data is observed. A naive adaption of this for RL would require access to all the

underlying MDPs in the past for continuously updating the initialization vector,

which would be impractical. Doing this efficiently remains an open question and

our method is complementary to choosing the initialization vector. Additionally,

FTL based adaptation always lags in tracking optimal performance as it uniformly

maximizes performance over all the past samples that might not be directly related to

15

the future. Further, in Chapter 3 we show that by explicitly capturing the trend in

the non-stationarity, we can mitigate this performance lag resulting from the use of

an FTL algorithm during the adaptation process.

More importantly, in many real-world applications, it can be infeasible to update

the system frequently if it involves high computational or monetary expense. In such

a case, even optimizing for the immediate future might be greedy and sub-optimal.

The system should optimize for a longer term in the future, to compensate for the

time until the next update is performed. None of the prior approaches mentioned

above can efficiently tackle this problem.

2.4.4 Multi-Agent Systems and Games

Non-stationarity also occurs in multiplayer games, like rock-paper-scissors, where

each episode is a single one-step interaction (Singh et al., 2000; Bowling, 2005; Conitzer

and Sandholm, 2007) and the opponent can change their strategy as a response to the

agent’s previous decisions. These types of changes are related to active non-stationarity

(which we consider in Chapter 5). In such games, opponent modeling has been shown

to be useful and regret bounds for multi-player games have also been established

(Zhang and Lesser, 2010; Mealing and Shapiro, 2013; Foster et al., 2016; Foerster et al.,

2018). Efficiently learning sequential strategies in a non-stationary setting is still an

active research problem. Further, often these games still assume that the underlying

system/environment (excluding other players) is stationary and focus on searching

for (Nash) equilibria. However, under general non-stationarity, the underlying system

may also change and thus there may not even exist any fixed equilibria.

Perhaps a more relevant setting would be that of evolutionary games, where the

pay-off matrix and specification of the game can change over time. In such settings,

methods involving replicator dynamics (Hennes et al., 2019) have been used to adapt to

the changed game. Such methods, however, do not leverage any underlying structure

16

in how the game is changing nor do they account for settings where the changes might

be a consequence of past interactions of the agent.

2.4.5 Hidden-Parameter MDP

A Hidden-Mode MDP is an alternate setting that assumes that the environment

changes are confined to a small number of hidden modes, where each mode represents

a unique MDP. This provides a more tractable way to model a limited number of

MDPs (Choi et al., 2000; Basso and Engel, 2009; Mahmud and Ramamoorthy, 2013),

or perform updates using mode-change detection (Da Silva et al., 2006; Alegre et al.,

2021).

Hidden-parameter (HiP) MDPs (Doshi-Velez and Konidaris, 2016) build upon this

direction by assuming that there exist hidden real-valued features that parameterize

the MDP. Changes in these features cause the changes in the environment. To tackle

non-stationarity, Xie et al. (2020a) proposed modeling the problem as a HiP-MDP and

estimating the hidden parameter from the observed trajectories. Our work provides a

complementary perspective by using purely model-free approach that does not require

inferring or modeling any environment parameters.

2.4.6 Tracking

Tracking has also been shown to play an important role in non-stationary domains.

Thomas et al. (2017) and Jagerman et al. (2019b) have proposed policy evaluation tech-

niques for the passive non-stationary setting by tracking a policy’s past performances.

However, they do not provide any procedure for searching for a good future policy.

To adapt quickly in non-stationary tasks, TIDBD (Kearney et al., 2018) and AdaGain

(Jacobsen et al., 2019) perform TD-learning while also automatically (de-)emphasizing

updates to (ir)relevant features by modulating the learning rate of the parameters

associated with the respective features. Similarly, Abdallah and Kaisers (2016) propose

17

repeating a Q-value update inversely proportional to the probability with which an

action was chosen to obtain a transition tuple.

For episodic non-stationary MDPs, researchers have also looked at providing

regret bounds for algorithms that exploit oracle access to the current reward and

transition functions (Even-Dar et al., 2005; Yu and Mannor, 2009; Abbasi et al.,

2013; Lecarpentier and Rachelson, 2019; Li et al., 2019). Alleviating oracle access by

performing a count-based estimate of the reward and transition functions based on

the recent history of interactions has also been proposed (Gajane et al., 2018; Cheung

et al., 2019). For tabular MDPs, past data from a non-stationary MDP can be used

to construct a maximum-likelihood estimate model (Ornik and Topcu, 2019) or a full

Bayesian model (Jong and Stone, 2005) of the transition dynamics. Our focus is on

the setting which is not restricted to tabular representations. Further, we go beyond

tracking and proactively optimize for the future.

2.4.7 One-step Decision Making

Non-stationary multi-armed bandits (NMAB) capture the setting where the horizon

length is one, but the reward distribution changes over time (Moulines, 2008; Besbes

et al., 2014). Many variants of NMAB, like cascading non-stationary bandits (Wang

et al., 2019b; Li and de Rijke, 2019) and rotting bandits (Levine et al., 2017; Seznec

et al., 2018) have also been considered. In optimistic online convex optimization,

researchers have shown that better performance can be achieved by updating the

parameters using predictions (which are based on the past gradients) of the gradient of

the future loss (Rakhlin and Sridharan, 2013; Yang and Mohri, 2016; Mohri and Yang,

2016; Wang et al., 2019a). In contrast, the focus of this dissertation is on methods for

sequential decision making.

18

2.4.8 Operations Research

In the operations research community, many dynamic sequential decision-making

problems are modeled using infinite horizon non-homogeneous MDPs (Hopp et al.,

1987). While estimating an optimal policy is infeasible under an infinite horizon setting

when the dynamics are changing and a stationary distribution cannot be reached,

several researchers have studied the problem of identifying sufficient forecast horizons

for performing near-optimal planning (Garcia and Smith, 2000; Cheevaprawatdomrong

et al., 2007; Ghate and Smith, 2013) or robust policy iteration (Sinha and Ghate, 2016).

These methods often require either a known model or a procedure for estimating the

entire model, which could be prohibitively difficult for many applications of interest.

19

CHAPTER 3

OPTIMIZING FOR THE FUTURE

Policy optimization algorithms in RL are promising for obtaining general purpose

control algorithms. However, as discussed earlier, most existing algorithms assume

that the transition dynamics and reward functions are fixed, that is, the underlying

decision process is stationary. This assumption is often violated in practical problems

of interest. For example, consider an assistive driving system. Over time, tires suffer

from wear and tear, leading to changes in friction. Similarly, in almost all human-

computer interaction applications, e.g., automated medical care, dialogue systems, and

marketing, human behavior changes over time. In such scenarios, if the automated

system is not adapted to take such changes into account, or if it is adapted only after

observing such changes, then the system might quickly become sub-optimal, incurring

severe loss (Moore et al., 2014). This raises the main question of this chapter:

How do we build systems that proactively search for a policy that

will be good when deployed in the future?

To address this question, in this chapter, we restrict our focus to structured changes

resulting from passive non-stationarity (see Chapter 2). Under this setting, we search

for a policy that is expected to have the highest performance in the future, where the

future performance of any policy is proactively anticipated by leveraging (estimates

of) the trend of that policy’s historical performance. The crux of the proposed idea is

based on merging concepts from reinforcement learning and counter-factual reasoning

with time-series forecasting.

20

Formally, we present a policy gradient based approach to search for a policy that

maximizes the forecasted future performance in the presence of passive non-stationarity.

To capture the impact of changes in the environment on a policy’s performance, first,

the performance of the policy during the past episodes is estimated using counter-

factual reasoning. Subsequently, a regression curve is fit to these estimates to model

the performance trend of the policy over time, thereby enabling the forecast of

future performance. By differentiating this performance forecast with respect to the

parameters of the policy being evaluated, we obtain a gradient-based optimization

procedure that proactively searches for a policy that will perform well in the future.

Advantages: The proposed method has the following advantages:

• It does not require modeling the transition function, reward function, or how

either of them change in an environment with passive non-stationarity; and thus

holds the potential to scale well with respect to the number of states and actions

in the environment.

• Irrespective of the complexity of the environment or the policy parameterization,

it concisely models the effect of changes in the environment on a policy’s

performance using a univariate time-series.

• It is data-efficient in that it leverages all available data.

• It mitigates performance lag by proactively optimizing performance for interac-

tions in both the immediate and near future.

• It degenerates to an estimator of the ordinary policy gradient if the system is

stationary, meaning that there is little reason not to use our approach if there is

a possibility that the system might be non-stationary.

This chapter is organized as follows. Section 3.1 provides a quick overview of the

notation, followed by the problem statement in Section 3.2. Section 3.2 contains the

21

core idea that forms the foundation for this and the following chapters. Section 3.5

provides theoretical support regarding how the proposed method can generalize to

the stationary setting and Section 3.6 provides empirical results on several domains

inspired by real-world applications.

3.1 Notation

Recall from Chapter 2 that a non-stationary decision process (NSDP) is a sequence

of POMDPs (Mi)
∞
i=1. Let M be a set of possible POMDPs, where each POMDP

is defined by the tuple (S,A,O,O,P,R, µ). Only the observation function Oi, the

transition function Pi, the reward function Ri, and the initial state distribution

µi may differ for each POMDP Mi. Recall that Ot
i , A

t
i, and Rt

i denote the random

variables corresponding to the observation, action, and reward at time t in POMDP Mi.

The sequence of interactions in Mi is denoted by Hi := (St
i , O

t
i , A

t
i, R

t
i)

T
i=1, the observed

return is denoted by Gi :=
∑T

t=i R
t
i, and Ji(π) := Eπ[Gi|Mi] is the performance of π

on Mi. The set of possible interaction sequences (the possible values of Hi) is denoted

by H, and T :M×H×M→ [0, 1] is the ‘meta-transition’ function that governs the

non-stationarity in the POMDPs. That is, T (m,h,m′) = Pr(Mi+1=m′|Mi=m,Hi=h).

In this chapter we consider the restricted case where the non-stationarity is passive,

i.e., only caused by external factors,

∀(m,m′) ∈M2,∀(h, h′) ∈ H2, T (m,h,m′) = T (m,h′,m′).

3.2 Problem Statement

In many problems, like adapting to friction in robotics, human-machine interaction,

etc., the transition dynamics and reward functions change, but every other aspect of

the POMDP remains the same throughout. Therefore, we assume that for any two

POMDPs, Mk and Mk+1, the state set S and the action set A are the same.

22

If the exogenous process causing non-stationarity is arbitrary and changes from Mi

to Mi+1 in unreasonable ways, then there is little hope of finding a good policy for the

future as Mk+1 can be wildly different from everything that the agent has observed by

interacting with the past POMDPs M1, ...,Mk. However, in many practical problems

of interest, such changes are gradual and have an underlying (unknown) structure. To

make the problem tractable, we therefore assume that both the transition dynamics

(P1,P2, ...), and the reward functions (R1,R2, ...) vary gradually over time in a way

that ensures there are no abrupt jumps in the performance of any policy.

Problem Statement. We seek to find a sequence of policies that minimizes

lifelong regret:

argmin
{π1,π2,...πk,...}

∞∑
k=1

J∗
k −

∞∑
k=1

Jk(πk),

where J∗
k = maxπ Jk(π).

3.3 Background and Preliminaries

In this section we review some of the most related work, and summarize the

background needed for the concepts used in the chapter. A detailed summary of other

approaches can be found in Section 2.

3.3.1 Related Work

Recent works by Al-Shedivat et al. (2017) and Finn et al. (2019) present meta-

learning methods that search for initial policy parameters that can be quickly fine-

tuned when the objective is changing over time. However, they require a priori known

boundaries between train and test tasks, which are not available in the continually

changing setting. Further, these approaches are complementary to our own, as they

could be additionally applied to set the initial parameters of our algorithms. In our

empirical study, we show how the adaptation procedure of their methods can result in

23

a performance lag that is mitigated by our method by explicitly capturing the trend

in the objective resulting due to non-stationarity.

Concurrent to our contributions in this chapter (Chandak et al., 2020c), work by

Xie et al. (2020a) demonstrated how modeling the changes in a dynamic-parameter

MDP can be useful to tackle non-stationarity. We focus on the model-free paradigm

and our approach is complementary to these (partially) model-based methods.

3.3.2 Per-decision Importance Sampling

Consider the stationary setting, where Mi = M and Ji(π) = J(π) for all i. For a

given POMDP M , per-decision importance sampling (PDIS) allows us to estimate

the performance J(π) of a policy π for M , when the trajectory data might have been

collected/sampled using a different policy β. Formally, the PDIS estimator for J(π)

using N observed trajectories is defined as follows,

Ĵ(π) :=
1

N

N∑
i=1

T∑
t=0

(
t∏

l=0

π(Ol
i, A

l
i)

βi(Ol
i, A

l
i)

)
γtRt

i. (3.1)

If, ∀o ∈ O and ∀a ∈ A, π(o, a) > 0 implies that βi(o, a) > 0, then it is known that Ĵ(π)

is an unbiased estimator of J(π) (Thomas, 2015). Further, if the ratio π(o, a)/β(o, a)

is bounded above by a fixed constant, then Ĵ(π) is known to be a strongly consistent

estimator of J(π) as well (Thomas, 2015). Intuitively, to correct for the mismatch

between the policy βi that was used to collect the trajectory data and the policy π

whose performance J(π) we wish to estimate, Ĵ(π) re-weights the observed rewards

such that if that reward is more likely under the policy π compared to βi then it

up-weights the reward, and vice-versa. A more detailed discussion can be found in

the work by Thomas (2015, Chapter 3.6).

24

3.3.3 Weighted Importance Sampling

While (3.1) provides an unbiased estimate of J(π), it typically suffers from high-

variance. To observe this, notice that if the denominator in the importance ratio∏t
l=0

π(Ol
i,A

l
i)

βi(Ol
i,A

l
i)

is small then the ratio will have very large value, which can result in high

variance. To mitigate this issue, weighted importance sampling (WIS) normalizes the

importance ratios such that they are always bounded between zero and one. Formally,

WIS estimator is defined as:

J̄(π) :=

∑N
i=1

∑T
t=0 γ

tRt
i

(∏T
l=0

π(Ol
i,A

l
i)

βi(Ol
i,A

l
i)

)
∑N

i=1

(∏T
l=0

π(Ol
i,A

l
i)

βi(Ol
i,A

l
i)

) . (3.2)

Normalizing the importance ratios can help in mitigating the variance issue of PDIS,

but incurs bias. That is, for finite values of N , (3.2) may no longer be an unbiased

estimator of J(π). However, it is known that under similar conditions as discussed for

PDIS above, WIS is also a strongly consistent estimator of J(π) (Thomas, 2015).

3.4 Optimizing for the Future

The problem of minimizing lifelong regret is straightforward if the agent has access

to sufficient samples, in advance, from the future environment, Mk+1, that it is going

to face (where k denotes the current episode number). That is, if we could estimate

the start-state objective, Jk+1(π), for the future POMDP Mk+1, then we could search

for a policy π whose performance is close to J∗
K+1. However, obtaining even a single

sample from the future is impossible, let alone getting a sufficient number of samples.

This necessitates rethinking the optimization paradigm for searching for a policy that

performs well when faced with the future unknown POMDP. There are two immediate

challenges here:

1. How can we estimate Jk+1(π) without any samples from Mk+1?

2. How can gradients, ∂Jk+1(π)/∂θ, of this future performance be estimated?

25

In this section we address both of these issues using the following idea. When the

transition dynamics (P1,P2, ...), and the reward functions (R1,R2, ...) are changing

gradually, the performances (J1(π), J2(π), ...) of any policy π can also be expected to

vary smoothly over time. The impact of smooth changes in the environment can thus

often manifest as smooth changes in the performance of any policy, π. In cases where

there is an underlying, unknown, structure in the changes of the environment, one

can now ask:

If the performances J1:k(π) := (J1(π), ..., Jk(π)) of π over the course of past episodes

were known, can we analyze the trend in its past performances to find a policy that

maximizes future performance Jk+1(π)?

3.4.1 Forecasting Future Performance

In this section we address the first challenge of estimating future performance

Jk+1(π) and pose it as a time series forecasting problem. Broadly, this requires two

components: (a) A procedure to compute past performances, J1:k(π), of π. (b) A

procedure to create an estimate, Ĵk+1(π), of π’s future performance, Jk+1(π), using

the estimated values from component (a). An illustration of this idea is provided in

Figure 3.1.

Component (a). As we do not have access to the past POMDPs for computing

the true values of past performances, J1:k(π), we propose computing estimates, Ĵ1:k(π),

of them from the observed data. That is, in a non-stationary decision process, starting

with the fixed transition matrix P1 and the reward function R1, we want to estimate

the performance Ji(π) of a given policy in episode i ≤ k. Leveraging the fact that

the changes to the underlying POMDP are due to an exogenous processes, we can

estimate Ji(π) by estimating,

Ji(π) =
T∑
t=0

γtEπ

[
Rt

i

∣∣Mi

]
, (3.3)

26

Figure 3.1. An illustration, where the blue and red filled circles represent estimates
of the performances of policies π1 and π2 at different episodes in the past, using data
collected from a given policy β. The open circles represent the forecasted performance
of π1 and π2 estimated by fitting a curve on the past performance estimates.

where Mi is also a random variable. Next we describe how an estimate of Ji(π) can

be obtained from (3.3) using information only from the ith episode.

To get an unbiased estimate, Ĵi(π), of π’s performance during episode i, consider

the past trajectory Hi of the ith episode that was observed when executing a policy

βi. By using counter-factual reasoning (Rosenbaum and Rubin, 1983) and leveraging

the per-decision importance sampling (PDIS) estimator (Precup, 2000), an unbiased

estimate of Ji(π) is thus given by:1

Ĵi(π) :=
T∑
t=0

(
t∏

l=0

π(Ol
i, A

l
i)

βi(Ol
i, A

l
i)

)
γtRt

i. (3.4)

It is worth noting that computing (3.4) does not require storing all the past policies

βi, one need only store the actions and the probabilities with which these actions were

chosen.

Component (b). To obtain the second component, which captures the structure

in Ĵ1:k(π) := (Ĵ1(π), ..., Ĵk(π)) and predicts future performances, we make use of a

1We assume that ∀i ∈ N the distribution of Hi has full support over the set of all possible
trajectories of the POMDP Mi.

27

forecasting function Ψ that estimates future performance Ĵk+1(π) conditioned on the

past performances:

Ĵk+1(θ) := Ψ(Ĵ1(π), Ĵ2(π),, Ĵk(π)). (3.5)

While Ψ can be any forecasting function, we consider Ψ to be an ordinary least

squares (OLS) regression model with parameters w ∈ Rd×1, and the following input

(X) and output (Y) variables,

X := [1, 2, ..., k]⊤ ∈ Rk×1,

Y := [Ĵ1(π), Ĵ2(π), Ĵ2(π), ..., Ĵk(π)]
⊤ ∈ Rk×1.

For any x ∈ X, let ϕ(x) ∈ R1×d denote a d-dimensional function for encoding the time

index. For example, using an identity basis ϕ(x) := {x, 1}, or Fourier basis functions

ϕ(x) := {sin(2πnx|n ∈ N} ∪ {cos(2πnx)|n ∈ N} ∪ {1},

where N is the set of natural numbers. Let Φ ∈ Rk×d be the corresponding basis

matrix. If we consider the following least-squares problem,

w∗ ∈ argmin
w∈Rd×1

∥Φw − Y ∥22,

then using its solution w∗ = (Φ⊤Φ)−1Φ⊤Y (Strang et al., 1993) a forecast of the future

performance can be obtained using,

Ĵk+1(π) =ϕ(k + 1)w∗

=ϕ(k + 1)(Φ⊤Φ)−1Φ⊤Y. (3.6)

This procedure enjoys an important advantage – by only using a univariate

time-series to estimate future performance, it bypasses the need for modeling the

28

Figure 3.2. The proposed method from the lens of differentiable programming.
At any time k, we aim to optimize the policy’s parameters, θ, to maximize its
performance in the future, i.e., to maximize Jk+1(θ). However, conventional methods
(dotted arrows) can not be used to directly optimize for this. In this work, we achieve
this as a composition of two programs: one which connects the policy’s parameters to
its past performances, and the other which forecasts future performance as a function
of these past performances. The optimization procedure then corresponds to taking
derivatives through this composition of programs to update policy parameters in a
direction that maximizes future performance. Arrows (a) and (b) correspond to the
respective terms marked in 3.7.

environment, which can be prohibitively hard or even impossible. Further, note that

Φ⊤Φ ∈ Rd×d, where d << k typically, and thus the cost of computing the matrix

inverse is negligible. These advantages allow this procedure to scale to more challenging

problems, while being robust to the sizes of the state and action sets, |S| and |A|.

3.4.2 Differentiating Forecasted Future Performance

In the previous section, we addressed the first challenge and showed how to

proactively estimate future performance, Ĵk+1(θ), of a policy πθ by explicitly modeling

the trend in its past performances Ĵ1:k(θ). In this section, we address the second

challenge to facilitate a complete policy improvement procedure. An illustration of

the idea is provided in Figure 3.2.

Gradients for Ĵk+1(θ) with respect to θ can be obtained as follows,

29

dĴk+1(θ)

dθ
=

dΨ(Ĵ1(θ), ..., Ĵk(θ))

dθ

=
k∑

i=1

∂Ψ(Ĵ1(θ), ..., Ĵk(θ))

∂Ĵi(θ)︸ ︷︷ ︸
(a)

dĴi(θ)

dθ︸ ︷︷ ︸
(b)

. (3.7)

The decomposition in (3.7) has an elegant intuitive interpretation. The terms

assigned to (a) in (3.7) correspond to how the future prediction would change as a

function of past outcomes, and the terms in (b) indicate how the past outcomes would

change due to changes in the parameters of the policy πθ. In the next paragraphs, we

discuss how to obtain the terms (a) and (b).

To obtain term (a), note that in (3.6), Ĵi(θ) corresponds to the ith element of Y ,

and so using (3.5) the gradients of the terms (a) in (3.7) are,

∂Ĵk+1(θ)

∂Ĵi(θ)
=

∂ϕ(k + 1)(Φ⊤Φ)−1Φ⊤Y

∂Yi

= [ϕ(k + 1)(Φ⊤Φ)−1Φ⊤]i, (3.8)

where [Z]i represents the ith element of a vector Z. Therefore, (3.8) is the gradient of

predicted future performance with respect to an estimated past performance.

The term (b) in (3.7) corresponds to the gradient of the PDIS estimate Ĵi(θ) of

the past performance with respect to policy parameters θ. The following property

provides a form for (b) that makes its computation straightforward.

Property 1 (PDIS gradient). Let ρi(0, l) :=
∏l

j=0
πθ(O

j
i ,A

j
i)

βi(O
j
i ,A

j
i)

.

dĴi(θ)

dθ
=

T∑
t=0

∂ log πθ(O
j
i , A

t
i)

∂θ

(
T∑
l=t

ρi(0, l)γ
lRl

i

)
.

Proof. Here we provide complete derivations for obtaining a straightforward equation

for computing the gradients of the PDIS estimator with respect to the policy parameters.

30

t \l 0 1 2 ... T
0 γ0ρi(0, 0)Ψ

0
iR

0
i

1 γ1ρi(0, 1)Ψ
0
iR

1
i γ1ρi(0, 1)Ψ

1
iR

1
i

2 γ2ρi(0, 2)Ψ
0
iR

2
i γ2ρi(0, 2)Ψ

1
iR

2
i γ2ρi(0, 2)Ψ

2
iR

2
i

...
...

...
...

...
...

T γTρi(0, T)Ψ
0
iR

T
i γTρi(0, T)Ψ

1
iR

T
i γTρi(0, T)Ψ

2
iR

T
i ... γTρi(0, T)Ψ

T
i R

T
i

Table 3.1. let Ψt
i = ∂ log πθ(O

t
i , A

t
i)/∂θ. This table represents all the terms in 3.9

required for computing ∇Ĵi(θ). Gray color denotes empty cells.

These might also be of independent interest when dealing with off-policy policy

optimization for stationary (PO)MDPs.

Recall from (3.4) that,

Ĵi(θ) =
T∑
t=0

(
t∏

l=0

π(Ol
i, A

l
i)

βi(Ol
i, A

l
i)

)
γtRt

i.

Computing the gradient of Ĵi(θ),

∇Ĵi(θ) =
T∑
t=0

∂

∂θ

(
t∏

l=0

πθ(O
l
i, A

l
i)

β(Ol
i, A

l
i)

)
γtRt

i

=
T∑
t=0

(
t∏

l=0

πθ(O
l
i, A

l
i)

β(Ol
i, A

l
i)

)
∂ log

(∏t
l=0 πθ(O

l
i, A

l
i)
)

∂θ
γtRt

i

=
T∑
t=0

(
t∏

l=0

πθ(O
l
i, A

l
i)

β(Ol
i, A

l
i)

)(
t∑

l=0

∂ log πθ(O
l
i, A

l
i)

∂θ

)
γtRt

i

=
T∑
t=0

ρi(0, t)

(
t∑

l=0

∂ log πθ(O
l
i, A

l
i)

∂θ

)
γtRt

i

=
T∑
t=0

∂ log πθ(O
t
i , A

t
i)

∂θ

(
T∑
l=t

ρi(0, l)γ
lRl

i

)
, (3.9)

where, in the last step, instead of the summation over the partial derivatives of log πθ

for each weight ρ(·, ·), we consider the alternate form where the summation is over

the importance weights ρ(·, ·) for each partial derivative of log πθ. To see this step

31

clearly, let Ψt
i = ∂ log πθ(O

t
i , A

t
i)/∂θ, then Table 3.1 shows all the terms in (3.9). The

last step above corresponds to taking the column-wise sum instead of the row-wise

sum in Table 3.1.

3.4.3 Algorithm

Algorithm 1 provides a sketch of our proposed procedure, called Prognosticator,

for optimizing the future performance of the policy. To make the method more

practical, we incorporated two additional modifications to reduce computational cost

and variance.

First, it is often desirable to perform an update only after a certain episode interval

δ to reduce computational cost. This raises the question: if a newly found policy will

be executed for the next δ episodes, should we choose this new policy to maximize

performance on just the single next episode, or to maximize the average performance

over the next δ episodes? An advantage of our proposed method is that we can easily

tune how far in the future we want to optimize for. Thus, to minimize lifelong regret,

we propose optimizing for the mean performance over the next δ episodes. That is,

argmaxθ (1/δ)
∑δ

∆=1 Ĵk+∆(θ), where Ĵk+∆ is the forecast (made using all of the past

data) of the performance of πθ for episode k +∆.

Second, notice that if the policy becomes too close to deterministic, there would

be two undesired consequences. (a) The policy will not explore, thereby precluding

the agent from observing any changes to the environment in states that it no longer

revisits—changes that might make entering those states worthwhile to the agent. (b)

In the future when estimating Ĵk+1(θ) using the past performance of θ, importance

sampling will have high variance if the policy executed during episode k+ 1 is close to

deterministic. To mitigate these issues, we add an entropy regularizer H during policy

optimization.

32

Algorithm 1: Prognosticator
1 Input Learning-rate η, time-duration δ, entropy-regularizer λ
2 Initialize Forecasting function Ψ, Buffer B
3 while True do

Record a new batch of trajectories using πθ

4 for episode = 1, 2, ..., δ do
5 h = (Ot, At,Pr(At|Ot), Rt)

T
t=0

6 B.insert(h)

Update for future performance
7 for i = 1, 2, ... do

Evaluate past performances using (3.4)
8 for k = 1, 2, ..., |B| do
9 Ĵk(θ) =

∑T
t=0 ρ(0, t)γ

tRt
k

Future forecast and its gradient using using (3.6) and (3.7)
10 L(θ) = 1

δ

∑δ
∆=1 Ĵk+∆(θ)

11 θ ← θ + η ∂
∂θ
(L(θ) + λH(θ))

3.4.4 Understanding the Behavior of Prognosticator

Notice that as the scalar term (a) is multiplied by the gradient of the PDIS term

(b) in (3.7), the gradient of future performance can be viewed as a weighted sum

of off-policy policy gradients. In Figure 3.3, we provide visualization of the weights

ζi := ∂Ĵ100(θ)/∂Ĵi(θ) for PDIS gradients of each episode i, when the performance

for 100th episode is forecasted using data from the past 99 episodes. For the specific

setting when Ψ is an OLS estimator, these weights are independent of Y in (3.8) and

their pattern remains constant for any given sequence of POMDPs.

Importantly, note the occurrence of negative weights in Figure 3.3 when the identity

basis function or Fourier basis functions is used, suggesting that the optimization

procedure should move towards a policy that had lower performance in some of the

past episodes. While this negative weighting seems unusual at first glance, it has an

intriguing interpretation.

To better understand these negative weights, consider a qualitative comparison

when weights from different methods in Figure 3.3 are used along with the performance

33

Figure 3.3. The value of weights ζi for all values of i ∈ [1, 99] using different
functions to encode the time index. Notice that many weights are negative when using
the identity or Fourier bases.

estimates of policies π1 and π2 in Figure 3.1. Despite having lower estimates of return

everywhere, π2’s rising trend suggests that it might have higher performance in the

future, that is, Jk+1(π2) > Jk+1(π1). Existing online learning methods like FTL,

maximize performance on all the past data uniformly (green curve in Figure 3.3).

Similarly, the exponential weights (red curve in Figure 3.3) are representative of

approaches that only optimize using data from recent episodes and discard previous

data (Peters and Schaal, 2008). Either of these methods that use only non-negative

weights can never capture the trend to forecast Jk+1(π2) > Jk+1(π1). However,

the weights obtained when using the identity basis would facilitate minimization of

performances in the distant past and maximization of performance in the recent past.

Intuitively, this means that it moves towards a policy whose performance is on a linear

rise, as it expects that policy to have better performance in the future.

While weights from the identity basis are useful for forecasting whether Jk+1(π2) >

Jk+1(π1), it cannot be expected that the trend will always be linear as in Figure 3.1.

To be more flexible and allow for any smooth trend, we opt to use the Fourier basis

functions in our experiments. Observe the alternating sign of weights in Figure 3.3

34

when using the Fourier basis functions. This suggests that the optimization procedure

will take into account the sequential differences in performances over the past, thereby

favoring the policy that has shown the most performance increments in the past. This

also avoids restricting the performance trend of a policy to be linear.

3.4.5 Mitigating Variance

While model-free algorithms for finding a good policy are scalable to large problems,

they tend to suffer from high-variance (Greensmith et al., 2004). In particular, the

use of importance sampling estimators can increase the variance further (Guo et al.,

2017). In our setup, high variance in estimates of past performances Ĵ1:k(π) of π can

hinder capturing π’s performance trend, thereby making the forecasts less reliable.

Notice that a major source of variance is the availability of only a single trajectory

sample per POMDP Mi, for all i ∈ N. If this trajectory Hi, generated using βi is

likely when using βi, but has near-zero probability when using π then the estimated

Ĵi(π) is also nearly zero. While Ĵi(π) is an unbiased estimate of Ji(π), information

provided by this single Hi is of little use to evaluate Ji(π). Subsequently, discarding

this from time-series analysis, rather than setting it to be 0, can make the time series

forecast more robust against outliers. In comparison, if trajectory Hi is unlikely when

using βi but likely when using π, then not only is Hi very useful for estimating Ji(π)

but it also has a lower chance of occurring in the future, so this trajectory must be

emphasized when making a forecast. Such a process of (de-)emphasizing estimates of

past returns using the collected data itself can introduce bias, but this bias might be

beneficial in this few-sample regime.

To capture this idea formally, we build upon the insights of Hachiya et al. (2012)

and Mahmood et al. (2014), who draw an equivalence between weighted least-squares

(WLS) estimation and the weighted importance sampling (WIS) (Precup, 2000)

estimator. Particularly, let Gi :=
∑T

t=0 γ
tRt

i be the discounted return of the ith

35

trajectory observed from a stationary POMDP, and ρ‡i := ρi(0, T) be the importance

ratio of the entire trajectory. Then the WIS estimator, Ĵ‡(π), of the performance of π

in a stationary POMDP is,

Ĵ‡(π) := argmin
c∈R

1

n

n∑
i=1

ρ‡i (Gi − c)2 =

∑n
i=1 ρ

‡
iGi∑n

i=1 ρ
‡
i

.

To mitigate variance in our setup, we propose extending WIS. In the non-stationary

setting, to perform WIS while capturing the trend in performance over time, we use a

modified forecasting function Ψ‡, which is a weighted least-squares regression model

with a d−dimensional basis function ϕ, and parameters w‡ ∈ Rd×1,

w‡ := argmin
c∈Rd×1

1

n

n∑
i=1

ρ‡i (Gi − c⊤ϕ(i))2. (3.10)

Let Λ ∈ Rk×k be a diagonal weight matrix such that Λii = ρ‡i , let Φ ∈ Rk×d be the

basis matrix, and let the following be input and output variables,

X := [1, 2, ..., k]⊤ ∈ Rk×1,

Y := [G1, G2, ..., Gk]
⊤ ∈ Rk×1.

The solution to the weighted least squares problem in (3.10) is then given by w‡ =

(Φ⊤ΛΦ)−1Φ⊤ΛY and the forecast of the future performance can be obtained using,

Ĵ‡
k+1(π) := ϕ(k + 1)w‡ = ϕ(k + 1)(Φ⊤ΛΦ)−1Φ⊤ΛY.

Ĵ‡
k+1(π) has several desired properties:

• It incorporates a notion of how relevant each observed trajectory is towards

forecasting, while also capturing the trend in performance.

36

• The forecasts are less sensitive to the importance sampling variances.

• The entire process is still differentiable.

3.5 Generalizing to the Stationary Setting

As the agent is unaware of how the environment is changing, a natural question

to ask is: What if the agent wrongly assumed a stationary environment was non-

stationary? What is the quality of of the agent’s performance forecasts? What is the

impact of the negative weights on past evaluations of a policy’s performance? Here

we answer these questions.

Before stating the formal results, we introduce some necessary notation and some

additional conditions. Let J(π) be the performance of policy π for a stationary

POMDP. Let Ĵk+δ(π) and Ĵ‡
k+δ(π) be the non-stationary importance sampling (NIS)

and non-stationary weighted importance sampling (NWIS) estimators of performance

δ episodes in future.

Before proceeding towards the main results, we impose the following constraints

on the set of policies, and the basis functions ϕi : N→ R used for encoding the time

index in both Ψ and Ψ‡, with ϕ(·) = [ϕ1(·), ..., ϕd−1(·), 1].

(a) ϕ(·) always contains 1 to incorporate a bias coefficient in least-squares regression

(for example, ϕ(·) = [ϕ1(·), ..., ϕd−1(·), 1], where ∀i ∈ [1, d−1], ϕi(·) is a basis function).2

(b) There exists a finite constant C1, such that ∀i, |ϕi(·)| < C1.

(c) Φ has full column rank such that (Φ⊤Φ)−1 exists.

(d) We only consider a set of policies Π that have non-zero probability of taking any

action in any state. That is, ∃C2 > 0, such that ∀π ∈ Π, ∀s ∈ S,∀a ∈ A, π(a|s) > C2.

2If additional domain knowledge is available to select an appropriate basis function that can be
used to represent the performance trend of all the policies for the given non-stationary environment,
then all the following finite-sample and large-sample properties can be extended for that environment
as well, using that basis function.

37

Satisfying condition (a) is straightforward as it is typically already satisfied by

the set of basis functions used popularly. This constraint ensures that the regression

based forecasting function can capture a fixed constant that is required to model the

absence of any trend. This constraint is useful for our purpose as in the stationary

setting there exists no trend in the expected performance across episodes for any given

policy.

Conditions (b) and (c) are also readily satisfied by popular sets of basis functions.

For example, features from the Fourier basis are bounded by [−1, 1], and features from

polynomial/identity bases are also bounded when inputs are adequately normalized.

Further, when there are no repeated basis functions, and the number of samples is

more than the number of basis functions (k ≥ d), condition (c) is satisfied. This

ensures that the least-squares problem is well-defined and has a unique-solution.

Condition (d) ensures that the denominator in any importance ratio is always

bounded below, such that the importance ratios are bounded above. This implies

that the importance sampling estimator for any policy has finite variance. Use of

entropy regularization with common policy parameterizations (e.g., softmax) can

prevent violation of this condition.

With this notation and these conditions, we first formalize the stationarity assump-

tion:

Assumption 1 (Stationarity). For all i, Mi = Mi+1.

This implies that E[Ĵi(π)] = J(π) for all i. Following prior literature (Precup,

2000; Thomas, 2015; Mahmood et al., 2014) we also make a simplifying assumption

that allows us to later apply a standard form of the laws of large numbers:

Assumption 2 (Independence). Ĵi(π) are independent for all i ∈ {1, . . . , k}.

This assumption is satisfied if there is only one behavior policy (i.e., ∀i, βi = βi+1)

or if the sequence of behavior policies does not depend on the data. This assumption

38

Figure 3.4. Blood-glucose level of an in-silico patient for 24 hours (one episode).
Humps in the graph occur at times when a meal is consumed by the patient.

is not satisfied when the sequence of behavior policies depends on the data because

then episodes are not independent. While we expect that the following theorems apply

even without Assumption 2, we have not established this result formally.

We then have the following results indicating that NIS is unbiased and consistent

like ordinary importance sampling and NWIS is biased and consistent like weighted

importance sampling.

Theorem 1 (Unbiased NIS). Under Assumptions 1 and 2, for all δ ≥ 1, Ĵk+δ(π) is

an unbiased estimator of J(π). That is, E[Ĵk+δ(π)] = J(π).

Theorem 2 (Biased NWIS). Under Assumptions 1 and 2, for all δ ≥ 1, Ĵ‡
k+δ(π) may

be a biased estimator of J(π). That is, it is possible that E[Ĵ‡
k+δ(π)] ̸= J(π).

Theorem 3 (Consistent NIS). Under Assumptions 1 and 2, for all δ ≥ 1, Ĵk+δ(π) is

a consistent estimator of J(π). That is, as N →∞, ĴN+δ(π)
a.s.−→ J(π).

Theorem 4 (Consistent NWIS). Under Assumptions 1 and 2, for all δ ≥ 1, Ĵ‡
k+δ(π)

is a consistent estimator of J(π). That is, as N →∞, Ĵ‡
N+δ(π)

a.s.−→ J(π).

39

Proof. See Section 3.9 for all of these proofs.

NWIS is biased and consistent like the WIS estimator, and our experiments show

that it also has similar variance reduction properties that can make the optimization

process more efficient for non-stationary POMDPs when the variance of Ĵi(π) is high.

Remark 1. It is worth observing that NIS and the NWIS estimators reduce exactly

to the IS and WIS estimators (Precup, 2000) when ϕ(·) := [1].

3.6 Empirical Analysis

This section presents empirical evaluations using several environments inspired by

real-world applications that exhibit non-stationarity. In the following paragraphs, we

briefly discuss each environment.

3.6.1 Environments

We provide empirical results on three non-stationary environments: in-silico

diabetes treatment, a recommender system, and a goal-reacher task. Details for each

of these environments are provided in this section. For all of the above environments,

we regulate the speed of non-stationarity to characterize an algorithms’ ability to

adapt. Higher speed corresponds to a greater amount of non-stationarity; A speed of

zero indicates that the environment is stationary.

Non-stationary Diabetes Treatment: This domain models the problem of

type-1 diabetes management. The body of a person with type-1 diabetes does not

produce enough insulin, a hormone that promotes absorption of glucose from the

blood. Consumption of a meal increases the blood-glucose level in the body, and if the

blood-glucose level becomes too high, then the patient can suffer from hyperglycemia.

Insulin injections can reduce the blood-glucose level, but if the level becomes too low,

then the patient suffers from hypoglycemia. While either of the extremes is undesirable,

40

hypoglycemia is more dangerous and can triple the five-year mortality rate for a person

with diabetes (Man et al., 2014).

Autonomous medical support systems have been proposed to decide how much

insulin should be injected to keep a person’s blood glucose levels near ideal levels

(Bastani, 2014). Currently, the parameters of such a medical support system are set by

a doctor specifically for each patient. However, due to non-stationarities induced over

time as a consequence of changes in the body mass index, the insulin sensitivity of the

pancreas, diet, etc., the parameters of the controller need to be readjusted regularly.

Currently, this requires revisiting the doctor. A viable reinforcement learning solution

to this non-stationary problem could enable the automatic tuning of these parameters

for patients who lack regular access to a physician.

To model this domain, we use an open-source implementation (Xie, 2019) of the U.S.

Food and Drug Administration (FDA) approved Type-1 Diabetes Mellitus simulator

(T1DMS) (Man et al., 2014) for treatment of Type-1 diabetes, where we induce

non-stationarity by oscillating the body parameters between two known configurations.

Each episode consists of a day (1440 timesteps, where each timestep corresponds to a

minute) in an in-silico patient’s life and the transition dynamics of a patient’s body

for each second is governed by a continuous time ordinary differential equation (ODE)

(Man et al., 2014). After each minute the insulin controller is used to inject the desired

amount of insulin for controlling blood glucose.

However, the insulin sensitivity of a patient’s internal body organs vary over time,

inducing non-stationarity that should be accounted for. In the T1DMS simulator, we

induce this non-stationarity by oscillating the body parameters (e.g., insulin sensitivity,

rate of glucose absorption, etc.) between two known configurations available in the

simulator.

For controlling the insulin injection, we use a parameterized policy based on the

amount of insulin that a person with diabetes is instructed to inject prior to eating a

41

meal (Bastani, 2014):

injection =
current blood glucose− target blood glucose

CF
+

meal size
CR

,

where ‘current blood glucose’ is the estimate of the person’s current blood-glucose

level, ‘target blood glucose’ is the desired blood glucose, ‘meal size’ is the estimate of

the size of the meal the patient is about to eat, and CR and CF are two real-valued

parameters, that must be tuned based on the body parameters to make the treatment

effective.

Non-stationary Recommender System: During online recommendation of

movies, tutorials, advertisements and other products, a recommender system needs to

interact and personalize for each user. However, the user’s interest in different items

that can each be recommended fluctuates over time. For example, interests during

online shopping can vary based on seasonality or other unknown factors (Thomas

et al., 2017; Theocharous et al., 2020).

This environment models the desired recommender system setting where reward

(interest of the user) associated with each item changes over time. Figure 3.8 (left)

shows how the reward associated with each item changes over time, for each of the

considered ‘speeds’ of non-stationarity. The goal for the reinforcement learning agent

is to maximize revenue by recommending the item which the user is most interested

in at any time.

Non-stationary Goal Reacher: For an autonomous robot dealing with tasks in

the open-world, it is natural for the problem specification to change over time. An

ideal system should quickly adapt to the changes and still complete the task.

To model the above setting, this environment considers a task of reaching a non-

stationary goal position. That is, the location of the goal position keeps slowly moving

around with time. The goal of the reinforcement learning agent is to control the four

(left, right, up, and down) actions to move the agent towards the goal as quickly as

42

possible given the real valued Cartesian coordinates of the agent’s current location.

The maximum time given to the agent to reach the goal is 15 steps.

3.6.2 Algorithms Compared

We consider the following algorithms for comparison:

Prognosticator: Two variants of our algorithm, Pro-OLS and Pro-WLS, which

use OLS and WLS estimators for Ψ.

ONPG: Similar to the adaptation technique presented by Al-Shedivat et al. (2017),

this baseline performs purely online optimization by fine-tuning the existing policy

using only the trajectory being observed online.

FTRL-PG: Similar to the adaptation technique presented by Finn et al. (2019),

this baseline performs follow-the-(regularized)-leader optimization by maximizing

performance over both the current and all of the past trajectories.

3.6.3 Hyper-parameters

For both the variants of the proposed Prognosticator algorithms, we use the Fourier

basis functions to encode the time index while performing (ordinary/weighted) least

squares estimation. Since Fourier basis functions require inputs to be normalized with

|x| ≤ 1, we normalize each time index by dividing it by K + δ, where K is the current

time and δ is the maximum time into the future that we will forecast for. Further,

as we are regressing only on time (which are all positive values), is does not matter

whether the function for the policy performance over time is odd (Ψ(x) = −Ψ(−x)) or

not. Therefore, we drop all the terms in corresponding to sin(·), which are useful for

modeling odd functions. This halves the number of model parameters. Finally, instead

of letting n ∈ N, we restrict it to a finite set {1, ..., d− 1}, where d is a fixed constant

that determines the size of the feature vector for each input. In all our experiments, d

was a hyper-parameter chosen from {3, 5, 7}.

43

Other hyper-parameter ranges were common for all the algorithms. The discounting

factor γ was kept fixed to 0.99 and learning rate η was chosen from the range

[5× 10−5, 5× 10−2]. The entropy regularizer λ was chosen from the range [0, 1× 10−2].

The batch size δ was chosen from the set {1, 3, 5}. Inner optimization over past data

for the proposed methods and FTRL-PG was run for {10, 20, 30}× δ iterations. Inner

optimization for ONPG corresponds to one iteration over all the trajectories collected

in the current batch. Past algorithms have shown that while clipping the importance

weights make the estimators biased, clipping can improve stability of reinforcement

learning algorithms (Schulman et al., 2017). Similarly, we clip the maximum value of

the importance ratio to a value chosen from {5, 10, 15}. Note that the use of clipping

also violates the unbiased properties of our estimators. As the non-stationary diabetes

treatment problem has a continuous action space, the policy was parameterized with a

Gaussian distribution having a variance chosen from [0.5, 2.5]. For the non-stationary

goal-reacher environment, the policy was parameterized using a two-layer neural

network with number of hidden nodes chosen from {16, 32, 64}.

In total, for each algorithm-domain pair, 2000 settings were uniformly sampled

(loguniformly for learning rates and λ) from the mentioned hyper-parameter ranges/sets.

Results from the best performing settings are reported in all plots. Each hyper-

parameter setting was run using 10 seeds for the non-stationary diabetes treatment

(as it was time intensive to run a continuous time ODE for each step) and 30 seeds for

the other two environments to get the standard error of the mean performances. The

authors had shared access to a computing cluster, consisting of 50 compute nodes

with 28 cores each, which was used to run all the experiments.3

3Code for our algorithm can be accessed using the following link:
https://github.com/yashchandak/OptFuture_NSMDP.

44

https://github.com/yashchandak/OptFuture_NSMDP

Figure 3.5. Best performances of all the algorithms obtained by conducting a
hyper-parameter sweep over 2000 hyper-parameter combinations per algorithm, per
environment. For each hyper-parameter setting, 30 trials were executed for the
recommender system and the goal reacher environments. Error bars correspond to
the standard error. The x-axis represents how fast the environment is changing and
the y-axis represents regret (lower is better).

3.6.4 Results

In the non-stationary recommender system, as the exact value of J∗
k is available

from the simulator, we can compute the true value of regret. However, for the non-

stationary goal reacher and diabetes treatment environment, as J∗
k is not known for

any k, we use a surrogate measure for regret. That is, let J̃∗
k be the maximum return

obtained in episode k by any algorithm, then we use (
∑N

k=1(J̃
∗
k − Jk(π)))/(

∑N
k=1 J̃

∗
k)

as the surrogate regret for a policy π.

In the non-stationary recommender system, all the methods perform nearly the

same when the environment is stationary. FTRL-PG has a slight edge over ONPG

when the environment is stationary as all the past data is directly indicative of the

future POMDP. It is interesting to note that while FTRL-PG works the best for the

stationary setting in the recommender system and the goal reacher task, it is not the

best in the diabetes treatment task as it can suffer from high variance. We discuss

the impact of variance in later paragraphs.

45

Figure 3.6. Best performances of all the algorithms obtained by conducting a
hyper-parameter sweep over 2000 hyper-parameter combinations per algorithm, per
environment. For each hyper-parameter setting, 10 trials for the diabetes treatment
environment. Error bars correspond to the standard error. The x-axis represents how
fast the environment is changing and the y-axis represents regret (lower is better).

With the increase in the speed of non-stationarity, performance of both the baselines

deteriorate quickly. Of the two, ONPG is better able to mitigate performance lag as it

discards all the past data. In contrast, both the proposed methods, Pro-OLS and Pro-

WLS, can leverage all the past data to better capture the impact of non-stationarity

and thus are consistently more robust to the changes in the environment.

In the non-stationary goal reacher environment, a similar trend as above is observed.

While considering all the past data equally is useful for FTRL-PG in the stationary

setting, it creates drastic performance lag as the speed of the non-stationarity increases.

Between Pro-OLS and Pro-WLS, in the stationary setting, once the agent nearly

solves the task all subsequent trajectories come from nearly the same distribution

and thus the variance resulting from the importance sampling ratio is not severe. In

such a case, where the variance is low, Pro-WLS has less advantage over Pro-OLS and

additionally suffers from being biased. However, as the non-stationarity increases, the

optimal policy keeps changing and there is a higher discrepancy between distributions

46

of past and current trajectories. This makes the lower variance property of Pro-WLS

particularly useful. Having the ability to better capture the underlying trend, both

Pro-OLS and Pro-WLS consistently perform better than the baselines when there is

non-stationarity.

The non-stationary diabetes treatment environment is particularly challenging as it

has a continuous action set. This makes importance sampling based estimators subject

to much higher variance. Consequently, Pro-OLS is not able to reliably capture the

impact of non-stationarity and performs similar to FTRL-PG. In comparison, ONPG

is data-inefficient and performs poorly on this domain across all the speeds. The most

advantageous algorithm in this environment is Pro-WLS. Since Pro-WLS is designed

to better tackle variance stemming from importance sampling, it is able to efficiently

use the past data to capture the underlying trend and performs well across all the

speeds of non-stationarity.

3.6.5 Computational Complexity (Memory and Time)

The space requirement for our algorithms and FTRL-PG is linear in the number of

episodes seen in the past, whereas it is constant for ONPG as it discards all the past

data. The computational cost of our algorithm is also similar to FTRL-PG as the

only additional cost is that of differentiating through least-squares estimators which

involves computing (Φ⊤Φ)−1 or (Φ⊤ΛΦ)−1. This additional overhead is negligible as

these matrices are of the size d× d, where d is the size of the feature vector for the

time index and d << N , where N is the number of past episodes. Figures 3.5, 3.6,

3.8, and 3.9 present an empirical estimate for the sample efficiency.

3.6.6 Ablation Study

In Figure 3.7 we show the impact of the choice of basis function, ϕ(·), on the

performance of both of our proposed algorithms: Pro-OLS and Pro-WLS. Dimension

d for both the Fourier basis and the set of polynomial basis was chosen from {3, 5, 7}.

47

Figure 3.7. Best performances of all the algorithms for the non-stationary rec-
ommender system environment, obtained by conducting a hyper-parameter sweep
over 1000 hyper-parameter combinations per algorithm. For each hyper-parameter
setting, 30 trials were executed. Error bars correspond to the standard error. (Left)
Performance of Pro-OLS with Fourier, polynomial, and linear basis functions. (Right)
Performance of Pro-WLS with Fourier, polynomial, and linear basis functions.

All other hyper-parameters were searched as described in Section 3.6.3. It can be seen

that both the Fourier and polynomial basis functions provide sufficient flexibility for

modeling the trend, whereas the linear basis offers limited flexibility and results in

poor performance.

3.6.7 Performance Over Time

Figures 3.5 and 3.6 present summary statistics of the results. In this section we

present all the results in detail. Figure 3.8 shows the performances of all the algorithms

for individual episodes as the user interests change over time in the recommender

system environment. In this environment, as the true reward for each of the items

is directly available, we provide a plot showing how the rewards change over time in

Figure 3.8 (left). Notice that the shapes of the performance curves for the proposed

methods closely resemble the trend of the maximum reward attainable across time.

48

Figure 3.9 shows the performances of all the algorithms for the non-stationary

goal-reacher and the diabetes treatment environments. In these environments, the

maximum achievable performance for each episode is not readily available.

3.7 Conclusion

We presented a policy gradient-based algorithm that combines counter-factual

reasoning with curve-fitting to proactively search for a good policy for future POMDPs.

Irrespective of the environment being stationary or non-stationary, the proposed

method can leverage all the past data, and in non-stationary settings it can pro-

actively optimize for future performance as well. Therefore, our method provides a

single solution for mitigating performance lag and being data-efficient.

3.8 Limitations and Future Work

The method that we propose is limited to settings where (a) non-stationarity is

governed by an exogenous process (i.e., past actions do not impact the underlying

non-stationarity), which has no auto-correlated noise, and (b) performance of every

policy changes smoothly over time and has no abrupt breaks/jumps.

While the proposed algorithm has several desired properties, many open questions

remain. In our experiments, we noticed that the proposed algorithm is particularly

sensitive to the value of the entropy regularizer λ. Keeping λ too high prevents the

policy from adapting quickly. Keeping λ too low lets the policy overfit to the forecast

and become close to deterministic, thereby increasing the variance for subsequent

importance sampling estimates of policy performance. While we resorted to hyper-

parameter search, leveraging methods that adapt λ automatically might be fruitful

(Haarnoja et al., 2018).

Our framework highlights new research directions for studying bias-variance trade-

offs in the non-stationary setting. While tackling the problem from the point of view

49

Figure 3.8. (Left) Fluctuations in the reward associated with each of the 5 items that
can be recommended, for different speeds. (Right) Running mean of the best (among
different hyper-parameters) performance of all the algorithms for different speeds;
higher total expected return is better. Shaded regions correspond to the standard
error of the mean obtained using 30 trials. Notice the shape of the performance curve
for the proposed methods, which closely captures the trend of the maximum reward
attainable over time.

50

Figure 3.9. Running mean of the best performance of all the algorithms for different
speeds; higher total expected return is better. Shaded regions correspond to the
standard error of the mean obtained using 30 trials for NS Goal Reacher and 10 trials
for NS Diabetes Treatment.

51

of a univariate time-series is advantageous as the model-bias of the environment can be

reduced, this can result in higher variance in the forecasted performance. Developing

lower variance off-policy performance estimators is also an active research direction

which directly complements our algorithm. In particular, often a partial model of the

environment is available and using it through doubly-robust estimators (Jiang and Li,

2015; Thomas and Brunskill, 2016) is an interesting future direction.

Further, there are other forecasting functions, like kernel regression, Gaussian Pro-

cesses, ARIMA, etc., and some change-point detection algorithms that can potentially

be used to incorporate more domain knowledge in the forecasting function Ψ, or make

Ψ robust to jumps and auto-correlations in the time series.

3.9 Proofs

Here we provide proofs for the properties of the NIS and NWIS estimators. While

NIS and NWIS are developed for the non-stationary setting, these properties ensure

that these estimators generalize to the stationary setting as well. That is, when used in

a stationary setting, the NIS estimator is both unbiased and consistent like the PDIS

estimator, and the NWIS estimator is biased and consistent like the WIS estimator.

Our proof technique draws inspiration from the results presented by Mahmood

et al. (2014). The key modification that we make to leverage their proof technique is

that instead of using the features of the state as the input and the observed return

from that corresponding state as the target to the regression function, we use the

features of the time index of an episode as the input and the observed return for

that corresponding episode as the target. In their setup, because states are drawn

stochastically from a distribution, their analysis is not directly applicable to our setting

where inputs are time indices that form a deterministic sequence. For analysis of our

estimators, we leverage techniques discussed by Greene (2003) for analyzing properties

of the ordinary least squares estimator.

52

In the following, we first establish the finite-sample properties and then we establish

the large-sample properties for the NIS and NWIS estimators. Before proceeding

further, recall from (3.6) and (3.4.5) that the NIS and NWIS estimators are given by:

Ĵk+δ(π) = ϕ(k + δ)w = ϕ(k + δ)(Φ⊤Φ)−1Φ⊤Y

Ĵ‡
k+δ(π) = ϕ(k + δ)w‡ = ϕ(k + δ)(Φ⊤ΛΦ)−1Φ⊤ΛY.

3.9.1 Finite Sample Properties

In this subsection, finite sample properties of NIS and NWIS are presented. Specif-

ically, it is established that NIS is an unbiased estimator, whereas NWIS can be a

biased estimator of J(π), where J(π) is the performance of a policy π in a stationary

POMDP.

Theorem 5 (Unbiased NIS). Under Assumptions 1 and 2, for all δ ≥ 1, Ĵk+δ(π) is

an unbiased estimator of J(π). That is, E[Ĵk+δ(π)] = J(π).

Proof. Recall from (3.6) that

Ĵk+δ(π) = ϕ(k + δ)w = ϕ(k + δ)(Φ⊤Φ)−1Φ⊤Y.

Therefore, the expected value of Ĵk+δ(π) is

E[Ĵk+δ(π)] = E
[
ϕ(k + δ)(Φ⊤Φ)−1Φ⊤Y

]
= ϕ(k + δ)

(
Φ⊤Φ

)−1 (
Φ⊤E [Y]

)
. (3.11)

As Y = [Ĵ0(π), ..., Ĵk(π)]
⊤ and the POMDP is stationary, the expected value of

each element of Y is J(π). Further, since ϕ(·) always contains the bias co-efficient,

and the performance of any policy is invariant to the episode number in a stationary

53

POMDP (Assumption 1), the optimal parameter for the regression model is w∗ =

[0, 0, ..., 0, J(π)]⊤, such that for any k,

ϕ(k)w∗ = [ϕ1(k), ..., ϕd−1(k), 1][0, ..., 0, J(π)]
⊤ = J(π). (3.12)

Therefore, E[Y] = Φw∗. Using this observation in (3.11),

E[Ĵk+δ(π)] = ϕ(k + δ)
(
Φ⊤Φ

)−1 (
Φ⊤Φw∗)

= ϕ(k + δ)
(
Φ⊤Φ

)−1 (
Φ⊤Φ

)
w∗

= ϕ(k + δ)w∗

= J(π).

Proof. (Alternate) Here we present an alternate proof for Theorem 5 which does not

require invoking w∗.

E
[
Ĵk+δ(π)

]
= E

[
ϕ(k + δ)(Φ⊤Φ)−1Φ⊤Y

]
(a)
= E

[
k∑

i=0

[
ϕ(k + δ)(Φ⊤Φ)−1Φ⊤]

i
Yi

]
(b)
=

k∑
i=0

[
ϕ(k + δ)(Φ⊤Φ)−1Φ⊤]

i
E [Yi] ,

where (a) is the dot product written as summation, and (b) holds because the

multiplicative constants are fixed values, as given in (3.8). Since the environment is

stationary, ∀i E [Yi] = J(π), therefore,

E
[
Ĵk+1(π)

]
= J(π)

k∑
i=0

[
ϕ(k + δ)(Φ⊤Φ)−1Φ⊤]

i
. (3.13)

In the following we focus on the terms inside the summation in (3.13). Without loss

of generality, assume that for a given matrix of features Φ, the feature corresponding

54

to value 1 is in the last column of Φ. Let A := (Φ⊤Φ)−1Φ⊤ ∈ Rd×k , and let

B := Φ[1 : k, 1 : d− 1] ∈ Rk×(d−1) be the submatrix of Φ such that B has all features

of Φ except the ones column, 1 ∈ Rk×1. Let I be the identity matrix in Rd×d, then it

can seen that (Φ⊤Φ)−1(Φ⊤Φ) can be expressed as,

[
A

] [
B 1

]
= I,

This implies [AB A1] = I. Therefore, as the jth row in last column of I corresponds

to the dot product of the jth row of A, Aj, with 1,

Aj1 =


0 j ̸= d,

1 j = d.

(3.14)

Equation (3.14) ensures that the summation of all rows of A, except the last, sum to 0,

and the last one sums to 1. Now, let ϕ(k+δ) := [ϕ1(k+δ), ϕ2(k+δ), ..., ϕd−1(k+δ), 1] ∈

R1×d. Therefore,

55

k∑
i=1

[
ϕ(k + δ)(Φ⊤Φ)−1Φ⊤]

i
=

k∑
i=1

[ϕ(k + δ)A]i

=
k∑

i=1

d∑
j=1

[ϕ(k + δ)]j Aj,i

=
d∑

j=1

[ϕ(k + δ)]j

k∑
i=1

Aj,i

=

(
d−1∑
j=1

[ϕ(k + δ)]j

k∑
i=1

Aj,i

)
+

(
[ϕ(k + δ)]d

k∑
i=1

Ad,i

)

=

(
d−1∑
j=1

[ϕ(k + δ)]j (Aj1)

)
+ ([ϕ(k + δ)]d (Ad1))

=

(
d−1∑
j=1

[ϕ(k + δ)]j · 0

)
+ ([ϕ(k + δ)]d · 1)

= [ϕ(k + δ)]d

= 1. (3.15)

Therefore, combining (3.15) with (3.13), E
[
Ĵk+δ(π)

]
= J(π).

Theorem 6 (Biased NWIS). Under Assumptions 1 and 2, for all δ ≥ 1, Ĵ‡
k+δ(π) may

be a biased estimator of J(π). That is, it is possible that E[Ĵ‡
k+δ(π)] ̸= J(π).

Proof. We prove this result using a simple counter-example. Consider the following

basis function, ϕ(·) = [1]:

J‡
k+δ(π) = ϕ(k + δ)w‡

= ϕ(k + δ) argmin
c∈R1×1

1

n

n∑
i=1

ρi(0, T)(Gi − cϕ(i))2

= argmin
c∈R1×1

1

n

n∑
i=1

ρi(0, T)(Gi − c)2

=

∑n
i=1 ρi(0, T)Gi∑n
i=1 ρi(0, T)

,

56

which is the WIS estimator. Therefore, as WIS is a biased estimator (Precup, 2000),

NWIS is also a biased estimator of J(π).

3.9.2 Large Sample Properties

In this subsection, large sample properties of NIS and NWIS are presented. Specif-

ically, it is established that both NIS and NWIS are consistent estimators of J(π), the

performance of a policy π for a stationary POMDP.

Theorem 7 (Consistent NIS). Under Assumptions 1 and 2, for all δ ≥ 1, Ĵk+δ(π) is

a consistent estimator of J(π). That is, as N →∞, ĴN+δ(π)
a.s.−→ J(π).

Proof. The proof follows from the standard consistency result for ordinary least-squares

regression (Greene, 2003). Formally, using (3.6),

lim
N→∞

ĴN+δ(π) = lim
N→∞

ϕ(N + δ)w

= lim
N→∞

ϕ(N + δ)(Φ⊤Φ)−1Φ⊤Y.

Since Y = [Ĵ0(π), ..., ĴN(π)]
⊤ and the POMDP is stationary, each element of Y is an

unbiased estimate of J(π). In other words, ∀i ∈ [0, N], Ĵi(π) = J(π) + ϵi, where ϵi is a

mean zero error. Let ϵ ∈ RN×1 be the vector containing all the error terms ϵi. Now,

using (3.12),

lim
N→∞

ĴN+δ(π) = lim
N→∞

ϕ(N + δ)
(
Φ⊤Φ

)−1 (
Φ⊤(Φw∗ + ϵ)

)
(3.16)

= lim
N→∞

ϕ(N + δ)
(
Φ⊤Φ

)−1 ((
Φ⊤Φ

)
w∗ +

(
Φ⊤ϵ

))
= lim

N→∞
ϕ(N + δ)w∗ + ϕ(N + δ)

(
Φ⊤Φ

)−1 (
Φ⊤ϵ

)
= lim

N→∞
J(π) + ϕ(N + δ)

(
Φ⊤Φ

)−1 (
Φ⊤ϵ

)
= lim

N→∞
J(π) + ϕ(N + δ)

(
1

N
Φ⊤Φ

)−1(
1

N
Φ⊤ϵ

)
.

57

If both Q−1 :=
(
lim

N→∞
1
N
Φ⊤Φ

)−1

and
(
lim

N→∞
1
N
Φ⊤ϵ

)
exist, then using Slutsky’s Theo-

rem,

lim
N→∞

ĴN+δ(π) = J(π) + ϕ(N + δ)Q−1

(
lim

N→∞

1

N
Φ⊤ϵ

)
. (3.17)

To validate conditions for Slutsky’s Theorem, notice that it holds from Grenander’s

conditions that Q−1 exists. Informally, Grenander’s conditions require that no feature

degenerates to a sequence of zeros, no feature of a single observation dominates the

sum of squares of its series, and the Φ⊤Φ matrix always has full rank. These conditions

are easily satisfied for most popular basis functions used to create input features. For

formal definitions of these conditions, we refer the reader to Chapter 5 of the work by

Greene (2003).

In the following, we restrict our focus to the term inside the brackets in the second

term of (3.17) and show that it exists, so that (3.17) is valid. Notice that the mean of

that term is,

E
[
1

N
Φ⊤ϵ

]
=

1

N
Φ⊤E [ϵ] = 0.

Since the mean is 0, the variance is

V
[
1

N
Φ⊤ϵ

]
=

1

N2
V
[
Φ⊤ϵ

]
=

1

N2
E
[(
Φ⊤ϵ

) (
Φ⊤ϵ

)⊤]
=

1

N2

(
Φ⊤E

[
ϵϵ⊤|Φ

]
Φ
)
.

As each policy has a non-zero probability of taking any action in any state, the variance

of PDIS (or the standard IS) estimator is bounded and thus each element of E[ϵϵ⊤|Φ] is

bounded. Further, as ϕi(·) is bounded, each element of Φ is also bounded. Therefore,

lim
N→∞

V
[
1

N
Φ⊤ϵ

]
→ 0.

58

Since the mean is 0 and the variance asymptotes to 0, by Kolmogorov’s strong law of

large numbers it follows that as N →∞, 1
N
Φ⊤ϵ

a.s.−→ 0. Combining this with (3.17),

lim
N→∞

ĴN+δ(π)
a.s.→ J(π) + ϕ(N + δ)Q−10 = J(π).

Theorem 8 (Consistent NWIS). Under Assumptions 1 and 2, for all δ ≥ 1, Ĵ‡
k+δ(π)

is a consistent estimator of J(π). That is, as N →∞, Ĵ‡
N+δ(π)

a.s.−→ J(π).

Proof. Recall from (3.10) that

Ĵ‡
N+δ(π) = ϕ(N + δ)w‡ = ϕ(N + δ)(Φ⊤ΛΦ)−1Φ⊤ΛY.

Consistency of Ĵ‡
N+δ(π) can be proven similarly to the proof of Theorem 7. Note that

here Y = [G0, ..., Gk]
⊤ contains the returns for each episode, and ΛY denotes the

unbiased estimates for J(π). Therefore, similar to (3.16),

lim
N→∞

Ĵ‡
N+δ(π) = lim

N→∞
ϕ(N + δ)(Φ⊤ΛΦ)−1(Φ⊤(Φw∗ + ϵ))

= lim
N→∞

ϕ(N + δ)(Φ⊤ΛΦ)−1((Φ⊤Φ)w∗ + Φ⊤ϵ)

= lim
N→∞

ϕ(N + δ)

(
1

N
Φ⊤ΛΦ

)−1((
1

N
Φ⊤Φ

)
w∗ +

1

N
Φ⊤ϵ

)
.(3.18)

In the following, we will make use of Slutsky’s Theorem. To do so, we first restrict

our focus to the terms in the first bracket in (3.18), and show existence of its limit.

Let ρ̃k := ρ‡k − E[ρ‡k] be a mean 0 random variable, then

59

lim
N→∞

1

N
Φ⊤ΛΦ = lim

N→∞

1

N

N∑
k=1

ρ‡kϕ(k)
⊤ϕ(k).

= lim
N→∞

(
1

N

N∑
k=1

ρ̃kϕ(k)
⊤ϕ(k) +

1

N

N∑
k=1

E
[
ρ‡k

]
ϕ(k)⊤ϕ(k)

)
.

(a)→ lim
N→∞

1

N

N∑
k=1

E
[
ρ‡k

]
ϕ(k)⊤ϕ(k)

(b)
= lim

N→∞

1

N

N∑
k=1

ϕ(k)⊤ϕ(k)

= lim
N→∞

1

N
Φ⊤Φ, (3.19)

where (a) follows from the Kolmogorov’s strong law of large numbers. To see this, let

Zk = ρ̃kϕ(k)
⊤ϕ(k). Notice that E[Zk] = E[ρ̃k]ϕ(k)⊤ϕ(k) = 0, and as both ρ̃ and ϕ(·)

are bounded, the variance of Zk is also bounded. Therefore, (1/N)
∑

ρ̃kϕ(k)
⊤ϕ(k)→ 0

almost surely as N →∞. Consequently, (b) is obtained using the fact that the expected

value of importance ratios is 1 (Thomas, 2015, Lemma 3). Notice that (3.19) reduced

to Q (which was defined in the proof of Theorem 7) and we know that its limit exists

because ϕ(·) is bounded. Further, we also know that Q−1 and
(
lim

N→∞
1
N
Φ⊤ϵ

)
exist (see

the proof of Theorem 7). Therefore, using Slutsky’s Theorem and substituting (3.19)

in (3.18),

lim
N→∞

Ĵ‡
N+δ(π) = ϕ(N + δ)

(
lim

N→∞

1

N
Φ⊤Φ

)−1((
lim

N→∞

1

N
Φ⊤Φ

)
w∗ + lim

N→∞

1

N
Φ⊤ϵ

)

= ϕ(N + δ)w∗ + ϕ(N + δ)

(
lim

N→∞

1

N
Φ⊤Φ

)−1(
lim

N→∞

1

N
Φ⊤ϵ

)
= J(π) + ϕ(N + δ)

(
lim

N→∞

1

N
Φ⊤Φ

)−1(
lim

N→∞

1

N
Φ⊤ϵ

)
a.s.−→ J(π), (3.20)

60

where (3.20) follows from the simplification used for (3.17) in the proof of Theorem 7.

61

CHAPTER 4

TOWARDS SAFE POLICY IMPROVEMENT

This chapter is not a pre-requisite for the following chapters. Therefore, readers

who are familiar with Chapter 3 and aim to read Chapter 5 can skip this chapter.

Reinforcement learning (RL) methods have shown potential for several real-world

sequential decision-making problems such as diabetes management (Bastani, 2014),

sepsis treatment (Saria, 2018), and budget constrained bidding (Wu et al., 2018).

For such real-world applications, safety guarantees are critical to mitigate serious

risks in terms of both human-life and monetary assets. More concretely, here, by

safety we mean that any update to a system should not reduce the performance of

an existing system (e.g., a doctor’s initially prescribed treatment). As discussed in

Chapter 2, a further complication is that many such practical applications of interest

are non-stationary, thereby violating the foundational assumption (Sutton and Barto,

2018b) of stationarity required by most RL algorithms. This raises the main question

we aim to address:

How can we build sequential decision-making systems that

provide safety guarantees for problems with non-stationarities?

Conventionally, RL algorithms designed to ensure safety (Pirotta et al., 2013; Garcıa

and Fernández, 2015; Thomas, 2015; Zhang and Cho, 2016; Laroche et al., 2017; Chow

et al., 2018) rely upon the stationarity assumption. That is, they assume that a

decision made by an agent always results in the same (distribution of) consequence(s)

62

when the environment is in a given state. Consequently, safety is only ensured by

prior methods when the stationarity assumption holds, which is rare in real-world

problems.

In this chapter, we take the first steps towards developing a method to address

the issue of safety in the presence of passive non-stationarity, as discussed in Section

2.3. The proposed method builds upon the ideas established in Chapter 3 to construct

a method for producing confidence intervals for the forecasted performance and use

this method to search for a policy that can provide performance improvement with

high-confidence.

Formally, using the Prognosticator procedure developed in Chapter 3, we first

obtain obtain point-estimates for the forecast of the future performance for a policy π.

Subsequently, we use a bootstrap based technique to obtain a high-confidence lower

bound on the future performance. Using a gradient based technique, we show how this

high-confidence lower bound can be leveraged to search for a policy that can provide

improvement over the baseline (safe) policy with a high-confidence.

Contributions: The primary contributions of this chapter are:

• We formalize the safe policy improvement problem in the presence of passive

non-stationarity and provide an algorithm for addressing it. Additionally, a user-

controllable knob is provided to set the desired confidence level : the maximum

admissible probability that an unsafe policy will be deployed.

• The proposed method only relies upon estimates of future performance, with

associated confidence intervals. It does not require building a model of a

non-stationary domain (NS-MDP), and so it is applicable to a broader class of

problems, as modeling a non-stationary decision process can often be prohibitively

difficult.

63

Figure 4.1. An illustration of the proposed idea where safety is defined to ensure that
the future performance of a proposed policy πc is never worse than that of an existing,
known, safe policy πsafe. The gray dots correspond to the returns, G(β), observed for
a policy β. The red and the blue dots correspond to the counterfactual estimates,
Ĵ(πc) and Ĵ(πsafe), for performance of πc and πsafe, respectively. The shaded regions
correspond to the uncertainty in future performance obtained by analysing the trend
of the counterfactual estimates for past performances.

• The proposed method provides an efficient gradient based procedure to search

for a policy that maximizes a bootstrap based high-confidence lower bound on

future performance.

• Safety guarantees of the proposed method generalize to the stationary setting,

meaning that there is little reason not to use our approach if there is a possibility

that the system might be non-stationary. In Figure 4.1, we provide an illustration

of the proposed approach for ensuring safe policy improvement amidst passive

non-stationarity.

This chapter is organized as follows. Section 4.1 provides an overview of the

notation and Section 4.2 provides the formal problem statement. Discussion of related

work and additional background on some preliminary concepts for the proposed idea

are presented in Section 4.3. In Section 4.4 we discuss the hardness of the problem

and introduce an assumption to make the problem more tractable. An overview of

the proposed idea is presented in Section 4.5 and Section 4.6 contains the procedure

for obtaining confidence intervals on the forecasted performance, which is the key

64

component of the proposed method. Finally, Section 4.7 provides the complete

algorithm and results are presented in Section 4.8.

4.1 Notation

Symbol Meaning

Mi POMDP for episode i.
Pi Transition dynamics for Mi.
Ri Reward function for Mi.
Oi Observation function for Mi.
µi Starting state distribution for Mi.
γ Discount factor.
π Policy.

πsafe Given baseline safe policy.
πc A candidate policy that can possibly be used for policy improvement.
βi Behavior policy used to collect data for episode i.

G(π,m) Discounted episodic return of π for POMDP m.
J(π,m) Expected discounted episodic return of π for POMDP m.
J(π, i) Expected discounted episodic return for episode i.
Ĵ(π, i) An estimate of J(π, i).
Ĵ lb(π) High-confidence lower bound on the future performance of π.
Ĵub(π) High-confidence upper bound on the future performance of π.

k Current episode number.
δ Number of episodes into the future.
Hi Trajectory during episode i.
D Set of trajectories.
Dtrain Partition of D used for searching πc.
Dtest Partition of D used for safety test.
alg An algorithm.

Table 4.1. List of symbols used in this chapter, and their associated meanings.

This chapter includes new notation beyond what was established in Chapter 2.

For convenience, we provide Tables 4.1 and 4.2 containing the list of symbols used in

this chapter. Some of these will be defined later in this chapter, as and when needed.

Recall from Chapter 2 that a non-stationary decision process (NSDP) is a sequence

of POMDPs (Mi)
∞
i=1. LetM be a set of POMDPs, where each POMDP is defined by

65

Symbol Meaning

α Quantity to define the desired safety level 1− α.
X Time indices for time-series.
Y Time series values corresponding to X.
Ŷ Estimates for Y .
ϕ Basis function for time series forecasting.
Φ Matrix containing basis for different episode numbers.
w Parameters for time series forecasting.
ξ Noise in the observed performances.
ξ̂ Estimate for ξ.
Ω̂ Diagonal matrix containing ξ̂2.
ŝ Standard deviation of the forecast.
t t-statistic for the forecast.
tα α-quantile of the t distribution.
C Function to obtain confidence interval on future performance.
σ∗ Rademacher random variable.
Y ∗ Pseudo-variable for Y .
Ŷ ∗ Pseudo-variable for Ŷ .
ξ∗ Pseudo-variable for ξ.
ξ̂∗ Pseudo-variable for ξ̂.
t∗ Pseudo-variable for t.
t∗
α Pseudo-variable for tα.
ŝ∗ Pseudo-variable for ŝ.

Table 4.2. List of symbols used in this chapter, and their associated meanings.

the tuple (S,A,O,O,P,R, µ). The observation function Oi, the transition function

Pi, the reward function Ri, and the initial state distribution µi can differ for each

POMDP Mi. Recall that Ot
i , A

t
i, and Rt

i to denote the random variables corresponding

to the observation, action, and reward at timestep t in POMDP Mi. The sequence of

interactions in Mi is denoted by Hi := (St
i , O

t
i , A

t
i, R

t
i)

T
i=1. For clarity in this chapter,

we will define variables associated with return slightly differently from how they were

defined in Chapter 2. Let a return of π for any m ∈M be G(π,m) :=
∑∞

t=0 γ
tRt and

the expected return J(π,m) := E[G(π,m)]. With a slight overload of notation, let the

performance of π for episode i be J(π, i) := E[J(π,Mi)]. We will use k to denote the

66

most recently finished episode, such that episode numbers [1, k] are in the past and

episode numbers (k,∞] are in the future.

The set of possible interaction sequences is denoted by H, and T :M×H×M→

[0, 1] is the ‘meta-transition’ function that governs the non-stationarity in the POMDPs.

That is, T (m,h,m′) = Pr(Mi+1=m′|Mi=m,Hi=h). In this chapter we consider the

restricted case where the non-stationarity is passive, i.e., only caused by external

factors:

∀(m,m′) ∈M2,∀(h, h′) ∈ H2, T (m,h,m′) = T (m,h′,m′).

4.2 Problem Statement

Let D := ((i,Hi) : i ∈ [1, k]) be a random variable denoting a set of trajectories

observed in the past. With slight abuse of notation, here we define Hi := (Ot
i , A

t
i, R

t
i)

T
i=1

without the state variables as those variables are unobserved. Let alg be an algorithm

that takes D as input and returns a policy π. Let πsafe be a known safe policy, and

let (1− α) ∈ [0, 1] be a constant selected by a user of alg, which we call the safety

level. We aim to create an algorithm alg that ensures with high probability that

alg(D), the policy proposed by alg, does not perform worse than the existing safe

policy πsafe during the future episode k + δ. That is, we aim to ensure the following

safety guarantee,

Pr
(
J(alg(D), k + δ) ≥ J(πsafe, k + δ)

)
≥ 1− α. (4.1)

4.3 Background and Preliminaries

In this section, we discuss related work and provide brief overviews of Seldonian

algorithms (Thomas et al., 2019a) and wild bootstrap (Wu et al., 1986; Mammen,

1993) methods that the proposed method builds upon.

67

4.3.1 Related Work

While some works for lifelong-reinforcement learning (Brunskill and Li, 2014; Abel

et al., 2018; Chandak et al., 2020a;c) or meta-reinforcement learning (Al-Shedivat

et al., 2017; Xie et al., 2020a) do aim to address the problem of non-stationarity,

they do not provide any safety guarantees. Perhaps the work most closely related

to ours is by Ammar et al. (2015), which aims to find a policy that satisfies a safety

constraint in the lifelong-learning setting. They use a follow-the-regularized-leader

(FTRL) (Shalev-Shwartz et al., 2012) approach to first perform an unconstrained

maximization over the average performance over all the trajectories collected in the

past, and then project the resulting solution onto a safe set. However, as shown by

Chandak et al. (2020c), FTRL based methods can suffer from a significant performance

lag in non-stationary environments. Further, the parameter projection requires a

priori knowledge of the set of safe policy parameters, which might be infeasible to

obtain for many problems, especially when the constraint is to improve performance

over an existing policy or when the safe set is non-convex (e.g., when using policies

parameterized using neural networks). Additionally, the method proposed by Chandak

et al. (2020c) for policy improvement does not provide safety guarantees, and thus it

would be irresponsible to apply it to safety-critical problems.

4.3.2 Wild Bootstrap

The goal of this section is to provide a brief introduction to the (wild) bootstrap

that we later use within our proposed method. Therefore, this section contains a

summary of existing works and has no original technical contribution. We begin by

first discussing the idea behind any general bootstrap and the wild bootstrap method.

Subsequently, we discuss alternatives to wild bootstrap.

In many practical applications, it is often desirable to infer distributional properties

(e.g., CIs) of a desired statistic of data (e.g., sample mean). However, in practice, it is

68

often not possible to get multiple estimates of the desired statistic in a data-efficient

way. To address this problem, bootstrap methods have received wide popularity in

the field of computational statistics (Efron and Tibshirani, 1994).

The core principle of any bootstrap procedure is to re-sample the observed data-set

D and construct multiple pseudo data-sets D∗ in a way that closely mimics the original

data generating process (DGP). This allows the creation of an empirical distribution of

the desired statistic by leveraging multiple pseudo data-sets D∗ (Efron and Tibshirani,

1994). For example, an empirical distribution containing B estimates of the sample

mean can be obtained by generating B pseudo data-sets, where each data-set contains

N samples uniformly drawn (with replacement) from the original data-set of size N .

For an excellent introduction to bootstrap CIs, refer to the works by Efron and

Tibshirani (1994) and DiCiccio and Efron (1996). The book by Hall (2013) provides a

thorough treatment of these methods using Edgeworth expansion, illustrating when

and how bootstrap methods can provide significant advantage over other methods.

For a very readable practitioner’s guide that touches upon several important aspects,

refer to the work by Carpenter and Bithell (2000).

Wild bootstrap: The original idea of wild bootstrap was proposed by Wu et al.

(1986) and later developed by Liu et al. (1988), Mammen (1993), and Davidson and

Flachaire (1999; 2008). The following summary about the wild bootstrap process is

based on an excellent tutorial by MacKinnon (2012).

Consider the system of equations in (4.10). The key idea of wild-bootstrap is that

the uncertainty in regression estimates (of parameters/predictions) is due to the noise

ξ in the observations. Therefore, if the pseudo-data Y ∗ is generated such that the

noise ξ∗ in the data generating process for Y ∗ resembles the properties of the true

underlying noise ξ, then with multiple redraws of such Y ∗ one can obtain an empirical

distribution of the desired statistic (which for our case, corresponds to the forecast of

a policy π’s performance). This can then be used to estimate the CIs.

69

As true noise ξ is unobserved, it raises a question about how to estimate its

properties to generate Y ∗. Fortunately, as ordinary least-squares is an unbiased

estimator of parameters/predictions (Wasserman, 2013), regression errors ξ̂ can be

used as a substitute for the true noise. Therefore, to mimic the underlying data

generating process, it would be ideal to have bootstrap error terms ξ∗ that have

similar moments as ξ̂. Following the work by Davidson and Flachaire (1999), we set

Y ∗ := Ŷ + ξ∗, where ξ∗ := ξ̂ ⊙ σ∗, and σ∗ ∈ Rk×1 is the independent Rademacher

random variable (i.e., ∀i ∈ [1, k], Pr(σ∗
i = +1) = Pr(σ∗

i = −1) = 0.5). This choice

of σ∗
i , for all i ∈ [1, k], ensures that ξ∗i has the desired zero mean and the same

higher-order even moments as ξ̂i because,

∀i, E[σ∗
i] = 0, E[σ∗

i
2] = 1, E[σ∗

i
3] = 0, E[σ∗

i
4] = 1.

Therefore, for the purpose of this paper, pseudo performances Y ∗ generated using

pseudo-noise ξ∗ allow generating a distribution of Ĵ(π, k + δ)∗ that closely mimics the

distribution of forecasts Ĵ(π, k+ δ) that would have been generated if we had the true

underlying data generating process. Here, different pseudo noises ξ∗ are created using

different σ∗, which subsequently allows obtaining different pseudo performances Y ∗.

4.4 Hardness of the Problem

In this section, we discuss the difficulty of the problem defined in (4.1), and

introduce a smoothness assumption that we leverage to make the problem tractable.

While it is desirable to ensure the safety guarantee in (4.1), obtaining a new policy

from alg(D) that meets the requirement in (4.1) might be impossible unless some

more regularity assumptions are imposed on the problem. To see why, notice that if

the environment can change arbitrarily, then there is not much hope of estimating

J(π, k + δ) accurately since J(π, k + δ) for any π could be any value between the

70

extremes of all possible outcomes, regardless of the data collected during episodes 1

through k.

To avoid arbitrary changes, previous works typically require the transition function

Pk and the reward function Rk to be Lipschitz smooth over time (Lecarpentier and

Rachelson, 2019; Jagerman et al., 2019a; Lecarpentier et al., 2020; Cheung et al.,

2020). The bound on the change in performance given such Lipschitz conditions can

be prohibitively loose. Even without the complexities of the full POMDP setting,

this looseness can be observed even with MDPs (i.e., ∀t, Ot = St), as we show below

in Theorem 9. Unfortunately, the bound on how much the performance of a policy

can change can be quite large when the transition or reward function changes only

a little): unless the Lipschitz constants are so small that they effectively make the

problem stationary, the performance of a policy π across consecutive episodes can still

fluctuate wildly. Notice that due to the inverse dependency on (1− γ)2, if γ is close to

one, then the Lipschitz constant L can be enormous even when ϵP and ϵR are small.

In Section 4.11.1 we also provide an example of a non-stationary decision process for

which Theorem 9 holds with exact equality, illustrating that the bound is tight.

Theorem 9 (Lipschitz smooth performance). If ∃ϵP ∈ R and ∃ϵR ∈ R such that for

any Mk and Mk+1, ∀s ∈ S, ∀a ∈ A, ∥Pk(·|s, a)−Pk+1(·|s, a)∥1 ≤ ϵP and |E[Rk(s, a)]−

E[Rk+1(s, a)]| ≤ ϵR, then the performance of any policy π is Lipschitz smooth over

time, with Lipschitz constant L :=
(

γRmax
(1−γ)2

ϵP + 1
1−γ

ϵR

)
. That is, ∀k ∈ N>0,∀δ ∈

N>0, |J(π, k)− J(π, k + δ)| ≤ Lδ.

Proof. See Section 4.11.1.

4.4.1 An Alternate Assumption

In many real-world sequential decision-making problems, when there is non-

stationarity the performance of a policy π does not fluctuate wildly between consecutive

episodes. Examples where performance changes are likely more regular include the

71

effect of a medical treatment on a patient; the usefulness of online recommendations

based on the interests of a user; or the quality of a controller as a robot’s motor

friction or battery capacity degrades. Therefore, instead of considering smoothness

constraints on the transition function Pk and the reward function Rk like above, we

consider more direct smoothness constraints on the performance J(π, i) of a policy π.

Similar assumptions have been considered for analyzing trends for digital marketing

(Thomas et al., 2017) and remain popular among policymakers for designing policies

based on forecasting (Wieland and Wolters, 2013).

If J(π, i) changes smoothly with episode i, then the performance trend of a given

policy π can be seen as a univariate time-series, i.e., a sequence of scalar values

corresponding to performances (J(π, i))ki=1 of π during episodes 1 to k. Leveraging

this observation, we propose modeling the performance trend using a linear regression

model that takes an episode number as input and provides a performance prediction as

output. To ensure that a wide variety of trends can be modeled, we use a d-dimensional

non-linear basis function ϕ : N>0 → R1×d. For example, ϕ can be the Fourier basis,

which has been known to be useful for modeling a wide variety of trends and is

fundamental for time-series analysis (Bloomfield, 2004). We state this formally in the

following assumption,

Assumption 3 (Smooth performance). For every policy π, there exists a sequence

of mean-zero and independent noises (ξi)
k+δ
i=1 , and ∃w ∈ Rd×1, such that, ∀i ∈ [1, k +

δ], J(π,Mi) = ϕ(i)w + ξi.

Recall that the stochasticity in J(π,Mi) is a manifestation of stochasticity in

Mi, and thus this assumption requires that the performance of π during episode i is

J(π, i) = E[J(π,Mi)] = ϕ(i)w.

Assumption 1 is reasonable for several reasons. The first is that the noise assump-

tions are not restrictive. The distribution of ξi does not need to be known and the ξi

can be non-identically distributed. Additionally, both w and (ξi)
k+δ
i=1 can be different

72

for different policies. The independence assumption only states that at each time step,

the variability in performance due to sampling Mi is independent of the past (i.e.,

there is no auto-correlated noise).

The strongest requirement is that the performance trend be a linear function of

the basis ϕ; but because ϕ is a generic basis, this is satisfied for a large set of problems.

Standard methods that make stationarity assumptions correspond to our method with

ϕ(s) = [1] (fitting a horizontal line). Otherwise, ϕ is generic: we might expect that

there exist sufficiently rich features (e.g., Fourier basis (Bloomfield, 2004))) for which

Assumption 1 is satisfied. In practice, we may not have access to such a basis, but

like any time-series forecasting problem, goodness-of-fit tests (Chen et al., 2003) can

be used by practitioners to check whether Assumption 3 is reasonable before applying

our method.

The basis requirement, however, can be a strong condition and could be violated.

This assumption is not applicable for settings where there are jumps or breaks in the

performance trend. For example, performance change is sudden when a robot undergoes

physical damage, its sensors are upgraded, or it is presented with a completely new

task. The other potential violation is the fact that the basis is a function of time.

Since the dimension d of the basis ϕ is finite and fixed, but k can increase indefinitely,

this assumption implies that performance trends of the policies must exhibit a global

structure, such as periodicity. This can be relaxed using auto-regressive methods that

are better at adapting to the local structure of any time-series. We discuss this and

other potential future research directions in Section 4.10.

4.5 SPIN: Safe Policy Improvement for Non-Stationary Set-

tings

To ensure safe policy improvement, we adapt the generic template of the Seldonian

framework (Thomas et al., 2019b) to the non-stationary setting. The overall approach

73

Figure 4.2. The proposed algorithm first partitions the initial data D1 into two sets,
namely Dtrain and Dtest. Subsequently, Dtrain is used to search for a possible candidate
policy πc that might improve the future performance, and Dtest is used to perform a
safety test on the proposed candidate policy πc. The existing safe policy πsafe is only
updated if the proposed policy πc passes the safety test.

consists of continually (1) taking an existing safe policy; (2) finding a candidate

policy that has (reasonably high) potential to be a strict improvement on the safe

policy; (3) testing if this candidate policy is still safe and is an improvement with

high confidence; (4) updating the policy to be the candidate policy only if it passes

the test; and (5) gathering more data with the current safe policy to get data for

the next candidate policy search. This procedure consists of four key technical steps:

performance estimation, safety test, candidate policy search, and data-splitting. A

schematic diagram of the overall procedure is provided in Figure 4.2.

4.5.1 Performance Estimation

To develop an algorithm that ensures the safety constraint in (4.1), we first require

an estimate Ĵ(π, k + δ) of the future performance J(π, k + δ) and the uncertainty

of this estimate, namely a function C for obtaining a confidence interval (CI) on

future performances. The function C should take as input a dataset, number of

future episodes δ, and a confidence parameter α. Ideally, when a two-sided high-

confidence bound is required then the function C should output Ĵ lb(π) and Ĵub(π) such

that Pr(J(π, k + δ) ∈ [Ĵ lb(π), Ĵub(π)]) ≥ 1 − α. Sometimes, only a high confidence

74

lower bound would be needed, in which case C outputs Ĵ lb(π) and ∞ such that

Pr(J(π, k + δ) ∈ [Ĵ lb(π),∞)) ≥ 1− α.

Under Assumption 3, estimating J(π, k + δ) (the performance of a policy δ episodes

into the future) can be seen as a time-series forecasting problem given the performance

trend (J(π, i))ki=1. We build upon the work by Chandak et al. (2020c) to estimate

J(π, k + δ). However, to the best of our knowledge, no method yet exists to obtain C .

A primary contribution of this work is to provide a solution to this technical problem,

developed in Section 4.6.

4.5.2 Safety Test

To satisfy the required safety constraint in (4.1), an algorithm alg needs to ensure

with high-confidence that a given πc, which is a candidate policy for updating the

existing safe policy πsafe, will have a higher future performance than that of πsafe.

Importantly, just as the future performance, J(πc, k + δ), of πc is not known a priori

for a non-stationary domain, the future performance of the baseline policy πsafe is also

not known a priori. Therefore, to ensure that the constraint in (4.1) is satisfied, we

use C to obtain a one-sided high-confidence lower and upper bound for J(πc, k + δ)

and J(πsafe, k + δ), respectively, each with confidence level α/2. The confidence level

is set to α/2 so that the total failure rate (i.e., either J(πc, k + δ) or J(πsafe, k + δ)

is outside their respective high-confidence bounds) is no more than α. Subsequently,

alg only updates πsafe if the high-confidence lower bound of J(πc, k + δ) is higher

than the high-confidence upper bound of J(πsafe, k + δ); otherwise, no update is made

and πsafe is chosen to be executed again.

4.5.3 Candidate Policy Search

An ideal candidate policy πc would be one that has high future performance

J(πc, k + δ), along with a higher high-confidence lower bound on its performance, so

that it can pass the safety test. However, in practice, there could often be conflicts

75

between policies that might have higher estimated future performance but with a low

high-confidence lower bound, and policies with lower estimates of future performance

but with higher high-confidence lower bound. As the primary objective of our method

is to ensure safety, we draw inspiration from prior methods for conservative/safe

learning in stationary domains (Garcıa and Fernández, 2015; Thomas et al., 2015a;

Kazerouni et al., 2017; Chow et al., 2018) and propose searching for a policy that has

the greatest high-confidence lower bound. That is, let the one-sided CI for the future

performance J(π, k + δ) obtained using C be [Ĵ lb(π),∞), then πc ∈ argmaxπ Ĵ
lb(π).

4.5.4 Data-Splitting:

Conventionally, in the time-series literature, there is only a single trend that needs

to be analyzed. In our problem setup, however, the time series forecasting function

is used to analyze trends of multiple policies during the candidate policy search. If

all of the available data D is used to estimate the high-confidence lower bound Ĵ lb(π)

for J(π, k + δ) and if π is chosen by maximizing Ĵ lb(π), then due to the multiple

comparisons problem (Benjamini and Hochberg, 1995) we are likely to find a π that

over-fits to the data and achieves a higher value of Ĵ lb(π). A safety test based on

such a Ĵ lb(π) would thus be unreliable. To address this problem, we partition D into

two mutually exclusive sets, namely Dtrain and Dtest, such that only Dtrain is used to

search for a candidate policy πc and only Dtest is used during the safety test.

4.6 Estimating Confidence Intervals for Future Performance

To complete the SPIN framework discussed in Section 4.5, we need to obtain an

estimate Ĵ(π, k + δ) of J(π, k + δ) and its confidence interval using the function C .

This requires answering two questions: (1) Given that in the past, policies (βi)
k
i=1 were

used to generate the observed returns, how do we estimate Ĵ(π, k + δ) for a different

policy π? (2) Given that the trajectories are obtained only from a single sample of

76

the sequence (Mi)
k
i=1, how do we obtain a confidence interval around Ĵ(π, k + δ)? We

answer these two questions in this section.

4.6.1 Point Estimate of Future Performance

To answer the first question, we build upon the following observation used by

Chandak et al. (2020c): While in the past, returns were observed by executing policies

(βi)
k
i=1, what if policy π was executed instead?

Formally, we use per-decision importance sampling (Precup, 2000) for Hi, to obtain

a counterfactual estimate Ĵ(π, i) :=
∑∞

t=0

(∏t
l=0

π(Al
i|Sl

i)

βi(Al
i|Sl

i)

)
γtRt

i, of π’s performance in

the past episodes i ∈ [1, k]. This estimate Ĵ(π, i) is an unbiased estimator of J(π, i),

i.e., E[Ĵ(π, i)] = J(π, i), under the the following assumption (Thomas, 2015), which

can typically be satisfied using an entropy-regularized policy βi.

Assumption 4 (Full Support). ∀a ∈ A and ∀s ∈ S there exists a c > 0 such that

∀i, βi(a|s) > c.

Having obtained counterfactual estimates (Ĵ(π, i))ki=1, we can then estimate J(π, k+

δ) by analysing the performance trend of (Ĵ(π, i))ki=1 and forecasting the future

performance Ĵ(π, k + δ). That is, let X := [1, 2, ..., k]⊤ ∈ Rk×1, let Φ ∈ Rk×d be the

corresponding basis matrix for X such that ith row of Φ, ∀i ∈ [1, k], is Φi := ϕ(Xi),

and let Y := [Ĵ(π, 1), Ĵ(π, 2), ..., Ĵ(π, k)]⊤ ∈ Rk×1. Then under Assumptions 3 and 4,

an estimate Ĵ(π, k+ δ) of the future performance can be computed using least-squares

(LS) regression, i.e., Ĵ(π, k + δ) = ϕ(k + δ)ŵ = ϕ(k + δ)(Φ⊤Φ)−1Φ⊤Y.

4.6.2 Confidence Intervals for Future Performance

We now aim to quantify the uncertainty of Ĵ(π, k + δ) using a confidence interval

(CI), such that the true future performance J(π, k + δ) will be contained within the

CI with the desired confidence level. To obtain a CI for J(π, k + δ), we make use of t-

statistics (Wasserman, 2013) and use the following notation. Let the sample standard

77

deviation for Ĵ(π, k + δ) be ŝ, where ŝ2 := ϕ(k + δ)(Φ⊤Φ)−1Φ⊤Ω̂Φ(Φ⊤Φ)−1ϕ(k + δ)⊤,

where Ω̂ is a diagonal matrix containing the square of the regression errors ξ̂ (see Section

4.11.2.0.1 for more details), and let the t-statistic be t := (Ĵ(π, k+ δ)−J(π, k+ δ))/ŝ.

If the distribution of t was known, then a (1− α)100% CI could be obtained as

[Ĵ(π, k + δ) − ŝt1−α/2, Ĵ(π, k + δ) − ŝtα/2], where for any α ∈ [0, 1],tα represents

α-percentile of the t distribution. Unfortunately, the distribution of t is not known.

One alternative could be to assume that t follows the student-t distribution (Student,

1908). However, that would only be valid if all the error terms in regression are

homoscedastic and normally distributed. Such an assumption could be severely

violated in our setting due to the heteroscedastic nature of the estimates of the past

performances resulting from the use of potentially different behavior policies (βi)
k
i=1

and due to the unknown form of stochasticity in (Mi)
k
i=1. Further, due to the use

of importance sampling, the performance estimates (Ĵ(π, i))ki=1 can often be skewed

and have a heavy-tailed distribution with high-variance (Thomas et al., 2015c). We

provide more discussion on these issues in Section 4.6.3.2.

To resolve the above challenges, we make use of wild bootstrap, a semi-parametric

bootstrap procedure that is popular in time series analysis and econometrics (Wu

et al., 1986; Liu et al., 1988; Mammen, 1993; Davidson and Flachaire, 1999; 2008).

The idea is to generate multiple pseudo-samples of performance for each Mi, using

the single performance estimate that was sampled. These multiple pseudo-samples

can then be used to obtain an empirical distribution and thus characterize the range

of possible performances. As we elaborate later, t-statistic t∗ corresponding to the

pseudo samples can be constructed, and subsequently the α-percentile for these t∗

can be used to estimate the α-percentile of the distribution of t. Below, we discuss

how to get these multiple pseudo-samples.

Recall that trajectories (Hi)
k
i=1 are obtained only from a single sample of the

sequence (Mi)
k
i=1. Due to this, only a single point estimate Ĵ(π, k + δ), devoid of

78

any estimate of uncertainty, of the future performance J(π, k + δ) can be obtained.

Therefore, we aim to create pseudo-samples of (Ĵ(π, i))ki=1 that resemble the estimates

of past performances that would have been obtained using trajectories from an alternate

sample of the sequence (Mi)
k
i=1. The wild bootstrap procedure provides just such an

approach, with the following steps.

1. Let Y + := [J(π, 1), ..., J(π, k)]⊤ ∈ Rk×1 correspond to the true performances of

π. Create Ŷ = Φ(Φ⊤Φ)−1Φ⊤Y , an LS estimate of Y +, using the counterfactual

performance estimates Y and obtain the regression errors ξ̂ := Ŷ − Y .

2. Create pseudo-noises ξ∗ := ξ̂ ⊙ σ∗, where ⊙ represents the Hadamard product

and σ∗ ∈ Rk×1 is a Rademacher random variable (i.e., ∀i ∈ [1, k], Pr(σ∗
i = +1) =

Pr(σ∗
i = −1) = 0.5).1

3. Create pseudo-performances Y ∗ := Ŷ + ξ∗, to obtain pseudo-samples for Ŷ and

Ĵ(π, k + δ) as Ŷ ∗ = Φ(Φ⊤Φ)−1Φ⊤Y ∗ and Ĵ(π, k + δ)∗ = ϕ(k+ δ)(Φ⊤Φ)−1Φ⊤Y ∗.

Steps 2 and 3 can be repeated to re-sample up to B ≤ 2k similar sequences of past

performance Y ∗, from a single observed sequence Y of length k, while also preserving

the time-series structure. This unreasonable property led Mammen (1993) to coin the

term ‘wild bootstrap’. For a brief discussion on why wild bootstrap works, see Section

4.3.2.

Given these multiple pseudo-samples, we can now obtain an empirical distribution

for pseudo t-statistic, t∗. Let the pseudo-sample standard deviation be ŝ∗, where ŝ∗2 :=

ϕ(k + δ)(Φ⊤Φ)−1Φ⊤Ω̂∗Φ(Φ⊤Φ)−1ϕ(k + δ)⊤, where Ω̂∗ is a diagonal matrix containing

the square of the pseudo-errors ξ̂∗ := Ŷ ∗−Y ∗. Let t∗ := (Ĵ(π, k+δ)∗− Ĵ(π, k+δ))/ŝ∗.

Then an α-percentile t∗
α of the empirical distribution of t∗ is used to estimate the

α-percentile of t’s distribution.

1While in machine learning the ‘*’ symbol is often used to denote optimal variables, to be consistent
with the bootstrap literature our usage of this symbol denotes pseudo-variables.

79

Finally, we can define C to use the wild bootstrap to produce CIs. To ensure this

is principled, we leverage a property proven by Djogbenou et al. (2019) and show in

the following theorem that the CI for J(π, k + δ) obtained using pseudo-samples from

wild bootstrap is consistent. For simplicity, we restrict our focus to settings where ϕ

is the Fourier basis (see Section 4.11.2.0.2 for more discussion).

Theorem 10 (Consistent Coverage). Under Assumptions 3 and 4, if the trajectories

(Hi)
k
i=1 are independent and if ϕ(x) is a Fourier basis, then as k →∞,

Pr
(
J(π, k + δ) ∈

[
Ĵ(π, k + δ)− ŝt∗

1−α/2, Ĵ(π, k + δ)− ŝt∗
α/2

])
→ 1− α.

Remark: We considered several factors when choosing the wild bootstrap to

create pseudo-samples of Ĵ(π, k + δ):

(a) Because of the time-series structure, there exists no joint distribution between

the deterministic sequence of time indices, X, and the stochastic performance

estimates, Y .

(b) Trajectories from only a single sequence of (Mi)
k
i=1 are observed.

(c) Trajectories could have been generated using different βi’s leading to heteroscedas-

ticity in the performance estimates (Ĵ(π, i))ki=1.

(d) Different policies π can lead to different distributions of performance estimates,

even for the same behavior policy β.

(e) Even for a fixed π and β, performance estimates (Ĵ(π, i))ki=1 can exhibit het-

eroskedasticty due to inherent stochasticity in (Mi)
k
i=1 as mentioned in Assump-

tion 3.

These factors make popular approaches like pairs bootstrap, residual bootstrap, and

block bootstrap not suitable for our purpose. In contrast, the wild bootstrap can take

all these factors into account.

80

4.6.3 Extended Discussion on Bootstrap

4.6.3.1 Why Not Use Other Bootstrap Methods?

One popular non-parametric technique for bootstrapping in regression is to re-

sample, with replacement, (x, y) pairs from the set of observed samples (X, Y) (Car-

penter and Bithell, 2000). However, in our setup, X variable corresponds to the

(deterministic) time index and thus there exists no joint distribution between the X

and the Y variables from where time can be sampled stochastically. Therefore, paired

re-sampling will not mimic the underlying data generative process in our setting.

A semi-parametric technique overcomes the above problem by only re-sampling the

Y variable as follows. First, a model is fit to the observed data (X, Y) and predictions

Ŷ are obtained. Then an empirical cumulative distribution function, Ψ(e) of all the

errors, e := Y − Ŷ , is obtained. Subsequently, new bootstrapped variables are created

as Y ∗ := Ŷ + ξ∗, where ξ∗ is the re-sampled noise from Ψ(e) (Efron and Tibshirani,

1994). However, such a process assumes that noises are homoscedastic, which will be

severely violated for our purpose.

Another popular technique for auto-correlated data uses the idea of block re-

sampling (Efron and Tibshirani, 1994). However, this assumes that the underlying

process is stationary, and hence is not suitable for our purpose.

4.6.3.2 Why Not Use Standard t-test?

Standard t-test assumes that the predictions will follow the student-t distribu-

tion. Such an assumption can be severely violated, especially in the presence of

heteroscedasticity, and heavy tailed noises, when the sample size is not sufficiently

large. Unfortunately, in our setting the use of multiple behavior policies results in

heteroscedasticity, and importance sampling results in a heavy tailed distribution

(Thomas et al., 2015c) for counterfactual estimates of past performances.

81

Figure 4.3. To search for a candidate policy πc, regression is first used to analyze the
trend of a given policy’s past performances. Wild bootstrap then leverages Rademacher
variables σ∗ and the errors from regression to create pseudo-performances. Based on
these pseudo-performances, an empirical distribution of the pseudo t-statistic, t∗, of
the estimate of future performance, is obtained. The candidate policy πc is found using
a differentiation based optimization procedure that maximizes the high-confidence
lower bound, Ĵ lb, computed using the empirical distribution of t∗.

It can also be shown that for a finite sample of size n, the coverage error of CIs

obtained using the standard t-statistic is of order O(n−1/2) (Wasserman, 2013; Hall,

2013). In comparison, it can be shown using Edgeworth expansions (Hall, 2013) that

the coverage error rate of CIs obtained using bootstrap methods typically provide

higher-order refinement by providing error rates up to O(n−p/2), where p ∈ [1, 3] (Hall,

1989; DiCiccio and Efron, 1996; Hall, 2013). For more elaborate discussions in the

context of wild bootstrap, see the work by Kline and Santos (2012) and by Djogbenou

et al. (2019). Also, see the work by Mammen (1993) for detailed empirical comparison

of standard t-test against wild-bootstrap.

4.7 Algorithm

Notice that as the CI [Ĵ lb(π), Ĵub(π)] obtained from C is based on the wild

bootstrap procedure, a gradient based optimization procedure for maximizing the

high-confidence lower bound Ĵ lb(π) would require differentiating through the entire

bootstrap process. Figure 4.3 illustrates the high-level steps in this optimization

process. More elaborate details and complete algorithms are deferred to Section 4.7.

82

Further, notice that a smaller amount of data results in greater uncertainty and

thus wider CIs. While a tighter CI during candidate policy search can be obtained by

combining all the past Dtrain to increase the amount of data, each safety test should

ideally be independent of all the previous tests, and should therefore use data that

has never been used before. While it is possible to do so, using only new data for each

safety test would be data-inefficient.

To make our algorithm more data efficient, similar to the approach of Thomas et al.

(2019b), we re-use the test data in subsequent tests. As illustrated by the black dashed

arrows in Figure 4.2, this modification introduces a subtle source of error because the

data used in consecutive tests are not completely independent. However, the practical

advantage of this approach in terms of tighter confidence intervals can be significant.

Further, as we demonstrate empirically, the error introduced by re-using test data can

be negligible in comparison to the error due to the false assumption of stationarity. In

Algorithms 2-4,2 we provide the steps for our method: SPIN. In Algorithm 3, PDIS

is shorthand for per-decision importance sampling discussed in Section 4.6. In the

following, we discuss certain aspects of SPIN, especially pertaining to the search of a

candidate policy πc.

2When (α/2)B or (1− α/2)B is not an integer, then floor or ceil operation should be used,
respectively.

83

Algorithm 2: Forecast

1 Input Predicates Φ, Targets Y , Forecast time(s) τ .

2 H ← (Φ⊤Φ)−1Φ⊤

3 φ← [ϕ(τ1), ..., ϕ(τδ)]

4 Ŷ ← ΦHY

5 Ĵ ← mean(φHY)

6 ξ̂ ← Y − Ŷ

7 Ω̂← diag(ξ̂2)

8 V̂ ← mean(φHΩ̂H⊤φ⊤)

9 Return Ĵ , V̂ , ξ̂

84

Algorithm 3: PI: Prediction Interval

1 Input Data D, Policy π, Safety-violation rate α, Forecast time(s) τ .

2 Φ← ∅, Y ← ∅

Create regression variables

3 for (k, h) ∈ D do

4 Ĵ(π, k)← PDIS(π, h)

5 Φ.append(ϕ(k))

6 Y.append(Ĵ(π, k))

7 Ĵ , V̂ , ξ̂ ← Forecast(Φ, Y, τ)

Wild Bootstrap (in parallel)

8 t∗ ← ∅,t∗∗ ← ∅

9 for i ∈ [1, ..., B] do

10 σ∗ ← [±1,±1, ...,±1]

11 ξ∗ ← ξ̂ ⊙ σ∗

12 Y ∗ ← Ŷ + ξ∗

13 Ĵ∗, V̂ ∗,_← Forecast(Φ, Y ∗, τ)

14 t∗[i]← (Ĵ∗ − Ĵ)/
√

V̂ ∗

Get prediction interval

15 t∗∗ ← sort(t∗)

16 Ĵ lb ← Ĵ − t∗∗[(1− α/2)B]
√

V̂

17 Ĵub ← Ĵ − t∗∗[(α/2)B]
√

V̂

18 Return (Ĵ lb, Ĵub)

85

Algorithm 4: SPIN: Safe Policy Improvement for Non-stationary settings

1 Input Safety-violation rate α, Initial safe policy πsafe, Entropy-regularizer λ,

Batch-size δ.

2 Initialize Dtrain ← ∅, Dtest ← ∅, π ← πsafe
1 , k ← 0.

3 while True do
Collect new trajectories using π

4 D ← ∅

5 for episode ∈ [1, 2, ..., δ] do

6 k ← k + 1

7 h← ((st, at,Pr(at|st), rt))Tt=0

8 D ← D ∪ (k, h)

Split data

9 D1,D2 ← split(D)

10 Dtrain ← D1 ∪ Dtrain

11 Dtest ← D2 ∪Dtest

Candidate search

12 τ ← [k + 1, ..., k + δ]

13 Ĵ lb(π),_← PI(Dtrain, π, α/2, τ)

14 πc ← argmaxπ[Ĵ
lb(π) + λH(π,Dtrain)]

Safety test

15 Ĵ lb,_← PI(Dtest, πc, α/2, τ)

16 _, Ĵub ← PI(Dtest, π
safe, α/2, τ)

17 if Ĵ lb > Ĵub then

18 π ← πc

19 else

20 π ← πsafe

86

Mean future performance: In many practical applications, it is often desirable

to reduce computational costs by executing a given policy π for multiple episodes

before an update, i.e., δ > 1. This raises the question regarding which episode,

among the future δ episodes, should a policy π be optimized for before execution?

To address this question, in settings where δ > 1, instead of choosing a single future

episode’s performance for optimization and safety check, we propose using the average

performance across all the δ future episodes, i.e., (1/δ)
∑δ

i=1 J(π, k + i).

Differentiating the high-confidence lower bound: SPIN proposes a candidate

policy πc by finding a policy π that maximizes the high-confidence lower bound Ĵ lb of

the future performance (Line 14 in Algorithm 4). To find πc efficiently, we propose

using a differentiable optimization procedure. A visual illustration of the process is

given in Figure 4.3.

Derivatives of most of the steps in Algorithms 2 and 3 can be efficiently solved

for using modern automatic differentiable programming libraries. Hence, in the

following, we restrict the focus of our discussion for describing a straight-through

gradient estimator for sorting performed in Line 15 in Algorithm 3. Note that sorting

is required to obtain the ordered-statistics to create an empirical distribution of t∗ such

that in Line 16 and 17 of Algorithm 3 the desired percentiles of t∗ can be obtained.

We first introduce some notations. Let t∗ ∈ RB×1 be the unsorted array and

t∗∗ ∈ RB×1 be its sorted counterpart. To avoid breaking ties when sorting, we assume

that there exists C3 > 0 such that all the values of t∗ are separated by at least C3. Let

Γ ∈ (0, 1)B×B be a permutation matrix (i.e., ∀(i, j), Γ(i, j) ∈ (0, 1), and each row and

each column of Γ sums to 1) obtained using any sorting function such that t∗∗ = Γt∗.

This operation has a computational graph as shown in Figure 4.4.

Notice that when the values to be sorted are perturbed by a very small amount,

the order of the sorted array remains the same (e.g., sorting both the array [30, 10, 20]

and its perturbed version results in [10, 20, 30]). That is, if t∗ is perturbed by an

87

Figure 4.4. Computational graph for obtaining ordered-statistics t∗∗.

ϵ→ 0, then the Γ obtained using the sorting function will not change at all. Therefore,

the derivative of Γ with respect to t∗ is 0 and derivative of a desired loss function L

with respect to t∗ is
∂L
∂t∗ = Γ⊤ ∂L

∂t∗∗ = Γ−1 ∂L
∂t∗∗ ,

as for any permutation matrix, Γ⊤ = Γ−1. Therefore, derivatives are back-propagated

through the sorting operation in a straight-through manner by directly performing

un-sorting.

More advanced techniques for differentiable sorting have been proposed by Cuturi

et al. (2019) and Blondel et al. (2020). These methods can be leveraged to further

improve our algorithm. We leave these for future work.

Entropy regularization:

As we perform iterative safe policy improvement, the current policy π becomes

the behavior policy β for future updates. Therefore, if the current policy π becomes

nearly deterministic then the past performance estimates for a future policy, which is

computed using importance sampling, can suffer from high-variance. To mitigate this

issue, we add a λ regularized entropy bonus H in the optimization objective. This is

only done during candidate policy search and hence does not impact the safety check

procedure.

Percentile CIs: Notice that each step of the inner optimization process to search

for a candidate policy πc requires computing multiple estimates of the pseudo standard

deviation ŝ∗, one for each sample of t∗, using wild-bootstrap to obtain the CIs. This

can be computationally expensive for real-world applications that run on low-powered

88

devices. As an alternative, we propose using the percentile method (Carpenter and

Bithell, 2000; Efron and Tibshirani, 1994) during the candidate policy search, which

unlike the t-statistic method, does not require computation of ŝ∗.

While the percentile method can provide a significant computational speed-up, the

CIs obtained from it are typically less accurate than those obtained from the method

that uses the t-statistic (Carpenter and Bithell, 2000; Efron and Tibshirani, 1994). To

get the best of both, (i) as searching for πc requires an inner optimization routine and

accuracy of CIs are less important, we use the percentile method to when computing

πc, and (ii) as the safety test requires no inner optimization and the coverage3 of CIs

are more important to ensure safety, we use the t-statistic method.

To obtain the CIs on J(π, k + δ) using the percentile method, let Ψ denote

the empirical cumulative distribution function (CDF) of the pseudo performance

forecasts Ĵ(π, k + δ)∗. Then a (1 − α)100% CI, [Ĵ lb, Ĵub], can be estimated as

[Ψ−1(α/2),Ψ−1(1−α/2)], where Ψ−1 denotes the inverse CDF distribution. That is, if

J∗ is an array of B pseudo samples of Ĵ(π, k + δ), and J∗∗ contains its sorted ordered-

statistics, then a (1 − α)100% CI for J(π, k + δ) is [J∗∗[(α/2)B], J∗∗[(1 − α/2)B]].

Gradients of the high-confidence lower bound from the percentile method can be

computed using the same straight-through gradient estimator discussed earlier.

Complexity analysis (space, time, and sample size): The memory re-

quirement for SPIN is linear in the number of past episodes because it stores all

the past data to analyze the performance trends of policies. As both SPIN and

Baseline (Thomas et al., 2015a; 2019b) incorporate an inner optimization loop, the

computational cost to search for a candidate policy πc before performing a safety test

is similar. Additional computational cost is incurred by our method as it requires

computing (Φ⊤Φ)−1 and V̂ in Algorithm 2 for time series analysis. However, note

3The coverage probability of a CI is the probability with which the target statistic falls within the
CI.

89

that as Φ⊤Φ ∈ Rd×d, where d is the dimension of basis function and d << k, the

cost of inverting Φ⊤Φ is negligible. To avoid the computational cost of computing

V̂ , the percentile method can be used during candidate policy search (as discussed

earlier), and the t-statistic method can be used only during the safety test to avoid

compromising on safety. An empirical comparison of the sample efficiency of SPIN

and Baseline is presented in Figure 4.5.

4.8 Empirical Analysis

In this section, we provide an empirical analysis on two domains inspired by

safety-critical real-world problems that exhibit non-stationarity. In the following, we

first briefly discuss these domains, and in Figure 4.5 we present a summary of results

for eight settings (four for each domain).

4.8.1 Domains

Non-stationary Recommender System (RecoSys): Online recommendation

systems for tutorials, movies, advertisements and other products are ubiquitous

(Theocharous et al., 2015; 2020). Personalizing for each user is challenging in such

settings as interests of an user for different items among the products that can be

recommended fluctuate over time. For an example, in the context of online shopping,

interests of customers can vary based on seasonality or other unknown factors.

To abstract such settings, in this domain, a synthetic recommender system interacts

with a user whose interests in different products change over time. Specifically, the

reward for recommending each product varies in a seasonal cycle. Such a scenario is

ubiquitous in industrial applications, and updates to an existing system should be

made responsibly; if it is not ensured that the new system is better than the existing

one, then it might result in a loss of revenue.

90

For πsafe, we set the probability of choosing each item proportional to the reward

associated with each item in M1. This resembles how recommendations would have

been set by an expert system initially, such that most relevant recommendation is

prioritized while some exploration for other items is also ensured.

Non-stationary Diabetes Treatment: This domain is modeled using an

open-source implementation (Xie, 2019) of the U.S. Food and Drug Administration

(FDA) approved type-1 Diabetes Mellitus simulator (T1DMS) (Man et al., 2014) for

the treatment of type-1 diabetes, where we induced non-stationarity by oscillating the

body parameters (e.g., rate of glucose absorption, insulin sensitivity, etc.) between two

known configurations available in the simulator. Each step of an episode corresponds

to a minute (1440 timesteps–one for each minute in a day) in an in-silico patient’s

body and is governed by a continuous time non-linear ordinary differential equation

(ODE) (Man et al., 2014). The goal of the system is to responsibly update the doctor’s

initial prescription, ensuring that the treatment is only made better. More description

on this domain can be found in Chapter 3.6.1.

The diabetes treatment problem is particularly challenging as the performance

trend of policies in this domain can violate Assumption 3. Notice that as the parameters

that are being oscillated are inputs to a non-linear ODE system, the exact trend of

performance for any policy in this NS-MDP is unknown. This more closely reflects a

real-world setting where Assumption 3 might not hold, as every policy’s performance

trend in real-world problems cannot be expected to follow any specific trend exactly–

one can only hope to obtain a coarse approximation of the trend.

4.8.2 Baseline

For a fair comparison, the baseline algorithm, which we call Baseline, used for our

experiments corresponds to the algorithm presented by Thomas et al. (2015a), which is

also a type of Seldonian algorithm (Thomas et al., 2019b). While this algorithm is also

91

designed to ensure safe policy improvement, it assumes that the domain is stationary.

Specifically, during the safety test it ensures that a candidate policy’s performance

is higher than that of πsafe’s by computing CIs on the average performance over the

past episodes.

4.8.3 Hyper-parameters

In Table 4.3, we provide hyper-parameter (HP) ranges that were used for SPIN

and Baseline for both the domains. As obtaining optimal HPs is often not feasible

in practical scenarios, algorithms that ensure safety should be robust to how an

end-user sets the HPs. Therefore, we set the hyper-parameters within reasonable

ranges and report the results in Figure 4.5. These results are aggregated over the

entire distribution of hyper-parameters, and not just for the best hyper-parameter

setting. This choice is motivated by the fact that best performances can often be

misleading as it only shows what an algorithm can achieve and not what it is likely to

achieve (Jordan et al., 2018; 2020).

For both RecoSys and Diabetes, we ran 1000 HPs per algorithm, per speed, per

domain. For RecoSys, we ran 10 trials per HP and 1 trial per HP for diabetes treatment

as it involves solving a continuous time ODE and hence is relatively computationally

expensive. For experiments, the authors had shared access to a computing cluster,

consisting of 50 compute nodes with 28 cores each.

For both the domains, (a) we set πsafe to a near-optimal policy for the starting

POMDP M1, representing how a doctor would have set the treatment initially, or how

an expert would have set the recommendations, (b) we set the safety level (1 − α)

to 95%, (c) we modulate the “speed” of non-stationarity, such that higher speeds

represent a faster rate of non-stationarity and a speed of zero represents a stationary

domain, and (d) we consider the following two algorithms for comparison: (i) SPIN:

The proposed algorithm that ensures safety while taking into account the impact of

92

Algorithm Hyper-parameter Range

SPIN & Baseline α 0.05
SPIN & Baseline δ (2, 4, 6, 8)
SPIN & Baseline N δ× uniform((2, 5))
SPIN & Baseline η 10−1

SPIN & Baseline λ (RecoSys) loguniform(5× 10−5, 100)
SPIN & Baseline λ (Diabetes) loguniform(10−2, 100)
SPIN & Baseline B (candidate policy search) 200
SPIN & Baseline B (safety test) 500

SPIN d uniform((2, 3, 4, 5))

Table 4.3. Here, N and η represents the number of gradient steps, and the learning
rate used while performing Line 14 of Algorithm 4. The dimension of Fourier basis is
given by d. Notice that d is set to different values to provide results for different settings
where SPIN is incapable of modeling the performance trend of policies exactly, and thus
Assumption 3 is violated. This resembles practical settings, where it is not possible to
exactly know the true underlying trend–it can only be coarsely approximated.

non-stationarity, and (ii) Baseline: An algorithm similar to those used in prior

works (Thomas et al., 2015a; 2019b; Metevier et al., 2019), which is aimed at ensuring

safety but ignores the impact of non-stationarity (see Section 4.8.2 for details).

4.8.4 Results

We present these results for SPIN and Baseline on both the domains in Figure 4.5

(bottom). In Figure 4.5, the plot on the bottom-left corresponds to how often unsafe

policies were executed during the process whose learning curves were plotted in Figure

4.5 (top-left). It can be seen that SPIN remains safe almost always. The middle

and the right plots in the top row of Figure 4.5 show the normalized performance

improvement over the known safe policy πsafe. The middle and the right plots in the

bottom row of Figure 4.5 show how often unsafe policies were executed.

Note that the performance for any policy π is defined in terms of the expected

return. However, for the diabetes domain, we do not know the exact performances of

any policy–we can only observe the returns obtained. Therefore, even when an alg

93

0 500 1000 1500 2000

0.5

0.0

0.5

Pe
rfo

rm
an

ce

RecoSys (Speed 2)

0 500 1000 1500 2000
Episodes

0

20

40

60

80

100

%
 U

ns
af

e
Po

lic
ie

s U
se

d

safe Baseline SPIN c

0 1 2 3
Speed

0

5

10

15

20

%
 U

ns
af

e
Po

lic
ie

s U
se

d

0 1 2 3
0.0

0.2

0.4

0.6

0.8

Im
pr

ov
em

en
t o

ve
r

sa
fe

RecoSys

0 1 2 3
Speed

0

5

10

15

20

25

0 1 2 3
0.0

0.1

0.2

0.3

0.4

Diabetes

Figure 4.5. (Top-left) An illustration of a typical learning curve. Notice that SPIN
updates a policy whenever there is room for a significant improvement. (Middle and
Right) As our main goal is to ensure safety, while being robust to how a user of our
algorithm sets the hyper-parameters (HPs), we do not show results from the best HP.
This choice is motivated by the fact that best performances can often be misleading
as it only shows what an algorithm can achieve and not what it is likely to achieve
(Jordan et al., 2018; 2020). Therefore, we present the aggregated results averaged over
the entire sweep of 1000 HPs per algorithm, per speed, per domain. Shaded regions
and intervals correspond to the standard error.

94

selects πsafe, it is not possible to get an accurate estimate of its safety violation rate

by directly averaging returns observed using a finite number of trials. To make the

evaluation process more accurate, we use the following evaluation procedure.

Let a policy π be ‘unsafe’ when J(π, k + δ) < J(πsafe, k + δ), and let πc denote

policies not equal to πsafe, then,

Pr(alg(D) = unsafe) = Pr(πc = unsafe|alg(D) = πc) Pr(alg(D) = πc)

+ Pr(πsafe = unsafe|alg(D) = πsafe) Pr(alg(D) = πsafe)

(a)
= Pr(πc = unsafe|alg(D) = πc) Pr(alg(D) = πc),

where (a) holds because Pr(πsafe = unsafe) = 0. Therefore, to evaluate whether

alg(D) is unsafe, for each episode we compare the sample average of returns obtained

whenever alg(D) ̸= πsafe to the sample average of returns observed using πsafe,

multiplied by the probability of how often alg(D) ̸= πsafe .

4.8.5 Discussion on Results

An ideal algorithm should adhere to the safety constraint in (4.1), maximize

future performance, and also be robust to hyper-parameters even in the presence of

non-stationarity. Therefore, to analyse an algorithm’s behavior, we aim to investigate

the following three questions:

Q1: How often does an algorithm violate the safety constraint J(alg(D), k + δ) ≥

J(πsafe, k + δ)?

Baseline ensures safety for the stationary setting (speed = 0) but has a severe

failure rate otherwise. Perhaps counter-intuitively, the failure rate for Baseline is

much higher than 5% for slower speeds. This can be attributed to the fact that at

higher speeds, greater reward fluctuations result in more variance in the performance

estimates, causing the CIs within Baseline to be looser, and thereby causing Baseline

to have insufficient confidence of policy improvement to make a policy update. Thus,

95

at higher speeds Baseline becomes safer as it reverts to πsafe more often. This calls

into question the popular misconception that the stationarity assumption is not severe

when changes are slow, as in practice slower changes might be harder for an algorithm

to identify, and thus might jeopardize safety. By comparison, even though bootstrap

CIs do not have guaranteed coverage when using a finite number of samples (Efron

and Tibshirani, 1994), it still allows SPIN to maintain a failure rate near the 5%

target.

Q2: What is the performance gain of an algorithm over the existing known safe

policy πsafe?

Notice that any algorithm alg can satisfy the safety constraint in (4.1) by never

updating the existing policy πsafe. Such an alg is not ideal as it will provide no

performance gain over πsafe. In the stationary settings, Baseline provides better

performance gain than SPIN while maintaining the desired failure rate. However, in

the non-stationary setting, the performance gain of SPIN is higher for the recommender

system. For diabetes treatment, both the methods provide similar performance gain

but only SPIN does so while being safe (see the bottom-right of Figure 4.5). The

similar performance of Baseline to SPIN despite being unsafe can be attributed to

occasionally deploying better policies than SPIN, but having this improvement negated

by deploying policies worse than the safety policy (e.g., see the top-left of Figure 4.5).

Q3: How robust is SPIN to hyper-parameter choices?

To analyze the robustness of our method to the choice of relative train-test data

set sizes, the objective for the candidate policy search, and to quantify the benefits of

the proposed safety test, we provide an ablation study on the RecoSys domain, for

all speeds (0, 1, 2, 3) in Table 4.4. All other experimental details are the same, except

for (iv), where mean performance, as opposed to the high-confidence lower bound, is

optimized during the candidate search. Table 4.4 shows that the safety violation rate

of SPIN is robust to such hyper-parameter changes. However, it is worth noting that

96

train-test 0 1 2 3 0 1 2 3
(i) SPIN 75%–25% .56 .22 .17 .14 0.0 3.6 5.1 5.4
(ii) SPIN 25%–75% .48 .29 .21 .19 0.0 4.6 6.5 7.0
(iii) SPIN 50%–50% .62 .28 .21 .18 0.0 4.7 6.4 6.6
(iv) SPIN-mean 50%–50% .70 .28 .24 .19 0.2 4.9 6.3 7.1
(v) NS + No safety 100%–0% .73 .22 .16 .19 9.4 37.6 40.2 38.6
(vi) Stationary + Safety 50%–50% .85 .12 .07 .07 0.0 19.8 15.3 11.9

Table 4.4. Ablation study on the RecoSys domain. Top row corresponds to different
speeds. (Left) Algorithm and the train-test split ratios. (Middle) Amount of perfor-
mance improvement over πsafe. (Right) Safety violation percentage. Rows (iii) and
(vi) correspond to results in Figure 4.5.

too small a test set can make it harder to pass the safety-test, and so performance

improvement is small in (i). In contrast, if the proposed safety check procedure for a

policy’s performance on a non-stationary domain is removed, then the results can be

catastrophic, as can be seen in (v).

4.9 Conclusion

In this paper, we took several first steps towards ensuring safe policy improve-

ment for NS-MDPs. We discussed the difficulty of this problem and presented an

algorithm for ensuring the safety constraint in (4.1) under the assumption of a smooth

performance trend. Further, our experimental results call into question the popular

misconception that the stationarity assumption is not severe when changes are slow.

In fact, it can be quite the opposite: Slow changes can be more deceptive and can

make existing algorithms, which do not account for non-stationarity, more susceptible

to deploying unsafe policies.

4.10 Limitations and Future Work

The method that we propose is limited to settings where both (a) non-stationarity

is governed by an exogenous process (that is, past actions do not impact the underlying

non-stationarity), and (b) the performance of every policy changes smoothly over

97

time and has no discontinuities (abrupt breaks or jumps). Such assumptions need

not be applicable to all problems of interests. For example, when there are jumps or

breaks in the time series, then the behavior of the proposed method is not ensured to

be safe. Further, our method also makes use of importance sampling which requires

access to the probabilities of the past actions taken under the behavior policy β.

If these probabilities are not available and are instead estimated from data then it

may introduce bias and may result in a greater violation of the safety constraint.

Finally, all of our experiments were conducted on simulated domains, where the exact

nature of non-stationarity may not reflect the non-stationarity observed during actual

interactions in the physical world. Developing simulators that closely mimic the

physical world, without incorporating systematic and racial bias, remains an open

problem and is complementary to our research.

There are several exciting directions for future research. We used the ordinary

importance sampling procedure to estimate past performances of a policy. However, it

suffers from high variance and leveraging better importance sampling procedures (Jiang

and Li, 2015; Thomas and Brunskill, 2016) can be directly beneficial to obtain better

estimates of past performances. Leveraging time-series models like ARIMA (Chen

et al., 2009) and their associated wild-bootstrap methods (Godfrey and Tremayne,

2005; Djogbenou et al., 2015; Friedrich et al., 2020) can be a fruitful direction for

extending our algorithm to more general settings that have correlated noises or

where the performance trend, both locally and globally, can be better modeled using

auto-regressive functions. In Chapter 5 we build upon this direction to develop

autoregressive methods for forecasting performances. Further, goodness-of-fit tests

(Chen et al., 2003) could be used to search for a time-series model that best fits the

application.

98

4.11 Proofs

4.11.1 Hardness Results

Several works in the past have presented performance bounds for a policy when

executed on an approximated stationary MDP (Whitt, 1978; Kakade and Langford,

2002; Kearns and Singh, 2002; Ravindran and Barto, 2004; Pirotta et al., 2013; Achiam

et al., 2017). See Section 6 of the work by Bertsekas and Tsitsiklis (1996) for a textbook

reference. The technique of our proof for Theorem 9 regarding non-stationary domains

is based on these earlier results.

Theorem 11 (Lipschitz smooth performance). If ∃ϵP ∈ R and ∃ϵR ∈ R such that for

any Mk and Mk+1, ∀s ∈ S, ∀a ∈ A, ∥Pk(·|s, a)−Pk+1(·|s, a)∥1 ≤ ϵP and |E[Rk(s, a)]−

E[Rk+1(s, a)]| ≤ ϵR, then the performance of any policy π is Lipschitz smooth over

time, with Lipschitz constant L :=
(

γRmax
(1−γ)2

ϵP + 1
1−γ

ϵR

)
. That is,

∀k ∈ N>0,∀δ ∈ N>0, |J(π, k)− J(π, k + δ)| ≤ Lδ. (4.2)

Proof. We begin by noting that,

|J(π, k)− J(π, k + δ)| ≤ sup
Mk∈M,Mk+δ∈M

|J(π,Mk)− J(π,Mk+δ)|. (4.3)

We now aim at bounding |J(π,Mk)− J(π,Mk+δ)| in (4.3). Let Rk(s, a) = E[Rk(s, a)].

Notice that the on-policy distribution and the performance of a policy π in the episode

k can be written as,

dπ(s,Mk) =(1− γ)
∞∑
t=0

γt Pr(St = s|π,Mk),

J(π,Mk) =(1− γ)−1
∑
s∈S

dπ(s,Mk)
∑
a∈A

π(a|s)Rk(s, a).

99

We begin the proof by expanding the absolute difference between the two performances

as follows:

|J(π,Mk)− J(π,Mk+δ)|

=|J(π,Mk)− J(π,Mk+1) + J(π,Mk+1)− ...− J(π,Mk+δ−1) + J(π,Mk+δ−1)− J(π,Mk+δ)|

≤
k+δ−1∑
i=k

|J(π,Mi)− J(π,Mi+1)|. (4.4)

To simplify further, we introduce a temporary notation ∆(s, a) := Ri(s, a)−Ri+1(s, a).

Now on expanding each of the consecutive differences in (4.4) and multiplying by

(1− γ) on both sides:

(1− γ)|J(π,Mi)− J(π,Mi+1)|

=

∣∣∣∣∣∑
s∈S

dπ(s,Mi)
∑
a∈A

π(a|s)Ri(s, a)−
∑
s∈S

dπ(s,Mi+1)
∑
a∈A

π(a|s)Ri+1(s, a)

∣∣∣∣∣
=

∣∣∣∣∣∑
s∈S

∑
a∈A

π(a|s)
(
dπ(s,Mi)Ri(s, a)− dπ(s,Mi+1)Ri+1(s, a)

)∣∣∣∣∣
=

∣∣∣∣∣∑
s∈S

∑
a∈A

π(a|s)
(
dπ(s,Mi)(Ri+1(s, a) + ∆(s, a))− dπ(s,Mi+1)Ri+1(s, a)

)∣∣∣∣∣
=

∣∣∣∣∣∑
s∈S

∑
a∈A

π(a|s)
(
dπ(s,Mi)− dπ(s,Mi+1)

)
Ri+1(s, a) +

∑
s∈S

∑
a∈A

π(a|s)dπ(s,Mi)∆(s, a)

∣∣∣∣∣ .
(4.5)

In the following, we bound the terms in (4.5) using the following three steps, (a) use

the Cauchy Schwartz inequality and bound each possible negative term with its absolute

value, (b) bound each reward Ri+1(s, a) using Rmax and use the Lipschitz smoothness

assumption to bound each ∆(s, a) using ϵR, and (c) equate sum of probabilities to

one. Formally,

100

(1− γ)|J(π,Mi)− J(π,Mi+1)|
(a)

≤
∑
s∈S

∑
a∈A

π(a|s) |dπ(s,Mi)− dπ(s,Mi+1)| |Ri+1(s, a)|+
∑
s∈S

∑
a∈A

π(a|s)dπ(s,Mi) |∆(s, a)|

(b)

≤Rmax

∑
s∈S

∑
a∈A

π(a|s) |dπ(s,Mi)− dπ(s,Mi+1)|+ ϵR
∑
s∈S

∑
a∈A

π(a|s)dπ(s,Mi)

(c)
=Rmax

∑
s∈S

|dπ(s,Mi)− dπ(s,Mi+1)|+ ϵR. (4.6)

To simplify (4.6) further, we make use of the following property,

Property 2 (Achiam et al. (2017)). Let P π
i ∈ R|S|×|S| be the transition matrix (s′

in rows and s in columns) resulting due to π and Pi, i.e., ∀t, P π
i (s

′, s) := Pr(St+1 =

s′|St = s, π,Mi), and let dπ(·,Mi) ∈ R|S| denote the vector of probabilities for each

state, then4

∑
s∈S

|dπ(s,Mi)− dπ(s,Mi+1)| ≤ γ(1− γ)−1
∥∥(P π

i − P π
i+1)d

π(·,Mi)
∥∥
1
.

Using Property 2,

4Note that the original result by Achiam et al. (2017) bounds the change in distribution between
two different policies under the same dynamics. Here, we have modified the property for our case,
where the policy is fixed but the dynamics are different.

101

∑
s∈S

|dπ(s,Mi)− dπ(s,Mi+1)|

(d)

≤γ(1− γ)−1
∑
s′∈S

∣∣∣∣∣∑
s∈S

(
P π
i (s

′, s)− P π
i+1(s

′, s)
)
dπ(s,Mi)

∣∣∣∣∣
≤γ(1− γ)−1

∑
s′∈S

∑
s∈S

∣∣P π
i (s

′, s)− P π
i+1(s

′, s)
∣∣ dπ(s,Mi)

=γ(1− γ)−1
∑
s′∈S

∑
s∈S

∣∣∣∣∣∑
a∈A

π(a|s)
(
Pr(s′|s, a,Mi)− Pr(s′|s, a,Mi+1)

)∣∣∣∣∣ dπ(s,Mi)

≤γ(1− γ)−1
∑
s′∈S

∑
s∈S

∑
a∈A

π(a|s) |Pr(s′|s, a,Mi)− Pr(s′|s, a,Mi+1)| dπ(s,Mi)

=γ(1− γ)−1
∑
s∈S

∑
a∈A

π(a|s)dπ(s,Mi)
∑
s′∈S

|Pr(s′|s, a,Mi)− Pr(s′|s, a,Mi+1)|

(e)

≤γ(1− γ)−1
∑
s∈S

∑
a∈A

π(a|s)dπ(s,Mi)ϵP

=γ(1− γ)−1ϵP , (4.7)

where (d) follows from expanding the L1 norm of a matrix-vector product, and (e)

follows from using the Lipschitz smoothness to bound the difference between successive

transition matrices. Combining (4.6) and (4.7),

|J(π,Mi)− J(π,Mi+1)| ≤(1− γ)−1
(
Rmaxγ(1− γ)−1ϵP + ϵR

)
.

=
γRmax

(1− γ)2
ϵP +

1

1− γ
ϵR. (4.8)

Finally, combining (4.4) and (4.8),

|J(π,Mi)− J(π,Mi+δ)| ≤
k+δ−1∑
i=k

(
γRmax

(1− γ)2
ϵP +

1

1− γ
ϵR

)
=δ

(
γRmax

(1− γ)2
ϵP +

1

1− γ
ϵR

)
.

102

Tightness of The Bound: In this paragraph, we present a non-stationary decision

process where (4.2) holds with exact equality, illustrating that the bound given by

Theorem 9 is tight.

Consider the domain given in Figure 4.6. Let γ = 0 and let A = {a} such that the

size of action set |A| = 1. Let the state set S = (s1, s2) and let the initial state for an

episode always be state s1. Let rewards be in the range [−1,+1] such that Rmax = 1.

Figure 4.6. Example NS-MDP.

Notice that for NS-MDP in Figure 4.6, ϵR = |E[R1(s1, a)]− E[R2(s1, a)]| = 0.2 as

R1(s1, a) = E[R1(s1, a)] = 1(+1) + 0(−1) = 1,

R2(s1, a) = E[R2(s1, a)] = 0.9(+1) + 0.1(−1) = 0.8.

Similarly,

ϵP = |P1(s1|s1, a)−P2(s1|s1, a)|+ |P1(s2|s1, a)−P2(s2|s1, a)| = 0.2.

Therefore, substituting the values γ = 0, Rmax = 1, ϵP = ϵR = 0.2, and δ = 1 in (4.2),

we get

|J(π,M1)− J(π,M2)| ≤ 0.2. (4.9)

Now to illustrate that the bound is tight, we compute the true difference in

performances of a policy π for the domains given in Figure 4.6, i.e., the LHS of (4.9).

103

Notice that

J(π,M1) = (1− γ)−1
∑
s∈S

dπ(s,M1)
∑
a∈A

π(a|s)R1(s, a)
(a)
= R1(s1, a) = 1,

where (a) follows because (i) γ = 0, (ii) as there is only a single action, π(a|s) = 1, and

(iii) since s1 is the starting state and γ = 0, therefore, dπ(s1,M1) = 1 and dπ(s2,M1) =

0. Similarly, J(π,M2) = R2(s1, a) = 0.8. Therefore, |J(π,M1) − J(π,M2)| = 0.2,

which is exactly equal to the value of bound in (4.9).

4.11.2 Uncertainty Estimation

Our Theorem 10 makes use of a property proven by Djogbenou et al. (2019). This

property by Djogbenou et al. (2019) was established for inference about the parameters

of a regression model. We leverage this property to obtain confidence intervals for

predictions of future performance. In the following section, we first review their results

and then in the section thereafter we present the proof of Theorem 10.

4.11.2.0.1 Preliminary Before moving forward, we first revisit all the necessary

notations and review the result by Djogbenou et al. (2019). For a regression problem,

let Y ∈ Rk×1 be the stochastic observations, let Φ ∈ Rk×d be the deterministic

predicates, and let w ∈ Rd×1 be the regression parameters. Let ξ ∈ Rk×1 be a vector

of k independent noises. The linear system of equations for regression is then given by,

Y = Φw + ξ. (4.10)

The least-squares estimate ŵ of w is given by ŵ := (Φ⊤Φ)−1Φ⊤Y and the estimate

Ŷ := Φŵ. Subsequently, the covariance of the estimate ŵ can be computed as follows.

104

V := V(ŵ) =E
[
(ŵ − E[ŵ]) (ŵ − E[ŵ])⊤

]
=E

[(
(Φ⊤Φ)−1Φ⊤(Y − E[Y])

) (
(Φ⊤Φ)−1Φ⊤(Y − E[Y])

)⊤]
=E

[(
(Φ⊤Φ)−1Φ⊤ξ

) (
(Φ⊤Φ)−1Φ⊤ξ

)⊤]
=E

[
(Φ⊤Φ)−1Φ⊤ξξ⊤Φ(Φ⊤Φ)−1

]
(a)
=(Φ⊤Φ)−1Φ⊤E

[
ξξ⊤
]
Φ(Φ⊤Φ)−1

=(Φ⊤Φ)−1Φ⊤ΩΦ(Φ⊤Φ)−1, (4.11)

where (a) follows from the fact that Φ is deterministic, and Ω is the covariance

matrix of the mean-zero and heteroscedastic noises ξ. Notice that as the noises are

independent, the off-diagonal terms in Ω are zero. However, since the true Ω is not

known, it can be estimated using Ω̂ which contains the squared errors from the OLS

estimate (MacKinnon, 2012). That is, letting ξ̂ := Ŷ −Y , we have that Ω̂ is a diagonal

matrix with ξ̂2 in the diagonal. Let such an estimator of V(w) be,

V̂ := (Φ⊤Φ)−1Φ⊤Ω̂Φ(Φ⊤Φ)−1. (4.12)

Let b⊤w be a desired null hypothesis with b⊤b = 1. Let tb, the t-statistic for

testing this hypothesis, and its pseudo-sample t∗
b obtained using the wild bootstrap

procedure with Rademacher variables σ∗ be (see Section 4.6 in the main body for

exact steps),

tb =
b⊤(ŵ − w)√

b⊤V̂ b
, t∗

b :=
b⊤(ŵ∗ − ŵ)√

b⊤V̂ ∗b
. (4.13)

Note that in (4.13), the subscript of b is not related to percentile of the previously

defined t-statistic: t. That is, tb and t∗
b are new variables.

Now we state the result we use from the work by Djogbenou et al. (2019). This

result requires two main assumptions. Our presentations of these assumptions are

105

slightly different from the exact statements given by Djogbenou et al. (2019). The

differences are (a) we make the assumptions stronger than what is required for their

results to hold, and (b) we ignore a third assumption that is related to cluster sizes,

as our setting is a special case where the cluster size is equal to 1. We call these

assumptions requirements to distinguish them from our assumptions.

Requirement 1 (Independence). ∀i ∈ [1, k], the noise terms ξi are mean-zero,

bounded, and independent random variables.

Requirement 2 (Positive Definite). (Φ⊤Φ)−1 is positive-definite and ∃C2 > 0 such

that ∥Φ∥∞ < C2.

Lemma 1 (Theorem 3.2 Djogbenou et al. (2019)). Under Requirements 1 and 2, if

E[σ∗3] <∞ and if the true value of w is given by (4.10), then as k →∞,

Pr

(
sup
x∈R
|Pr(t∗

b < x)− Pr(tb < x)| > α

)
→ 0.

4.11.2.0.2 Proof of Coverage Error First, we recall the notations established

in the main body, which are required for the proof. Using similar steps to those in

(4.11), it can be seen that the variance Vf of the estimator Ĵ(π, k+ δ) := ϕ(k+ δ)ŵ of

future performance is

Vf = ϕ(k + δ)(Φ⊤Φ)−1Φ⊤ΩΦ(Φ⊤Φ)−1ϕ(k + δ)⊤.

Similar to before, let an estimate V̂f of Vf be defined as,

V̂f = ϕ(k + δ)(Φ⊤Φ)−1Φ⊤Ω̂Φ(Φ⊤Φ)−1ϕ(k + δ)⊤, (4.14)

where Ω̂ is the same as in (4.12). Recall from Section 4.6 that the sample standard

deviation of ϕ(k + δ)ŵ is ŝ =
√
V̂f and the pseudo standard deviation is ŝ∗ :=

√
V̂ ∗
f ,

106

where the pseudo variables are created using the wild bootstrap procedure outlined

in Section 4.6. Similarly, recall that the t-statistic and the pseudo t-statistic for

estimating future performance are given by

t :=
Ĵ(π, k + δ)− J(π, k + δ)

ŝ
, t∗ :=

Ĵ(π, k + δ)∗ − Ĵ(π, k + δ)

ŝ∗
.

For the purpose of Theorem 10, we use a Fourier basis of order d, which is given

by (Bloomfield, 2004):

ϕ(x) :=

(
sin(2πnx)

C

∣∣∣∣n ∈ [1, d]

)
∪
(
cos(2πnx)

C

∣∣∣∣n ∈ [1, d]

)
∪
(
1

C

)
, (4.15)

where C :=
√
d+ 1.

Theorem 12 (Consistent Coverage). Under Assumptions 3 and 4, if the set of

trajectories (Hi)
k
i=1 are independent and if ϕ(x) is a Fourier basis of order d, then as

k →∞,

Pr
(
J(π, k + δ) ∈

[
Ĵ(π, k + δ)− ŝt∗

1−α/2, Ĵ(π, k + δ)− ŝt∗
α/2

])
→ 1− α.(4.16)

Proof. For the purpose of this proof, we will make use Lemma 1. Therefore, we first

discuss how our method satisfies the requirements for Lemma 1.

To satisfy Requirement 1, recall that in the proposed method the estimates

(Ĵ(π, i))ki=1 of past performances are obtained using counter-factual reasoning. There-

fore, satisfying Requirement 1 in our method requires consideration of two sources

of noise: (a) the noise resulting from the inherent stochasticity in the non-stationary

POMDP sequence, as given in Assumption 3, and (b) the other noise resulting due to

our use of importance sampling to estimate past performances (J(π, i))ki=1, which are

subsequently used to obtain the forecast for J(π, k + δ).

107

Notice that the noises (ξi)
k
i=1 inherent to the non-stationary POMDP are both

mean-zero and independent because of Assumption 3. Further, as importance sampling

is unbiased and uses independent draws of trajectories (Hi)
k
i=1, the additional noises

in the estimates (Ĵ(π, i))ki=1 are also mean-zero and independent. The boundedness

condition of each ξi also holds as (a) all episodic returns are bounded, which is

because every reward is bounded between [−Rmax, Rmax] and γ < 1, and (b) following

Assumption 4, the denominators of importance sampling ratios are lower bounded by

C. Therefore, importance weighted returns are upper bounded by a finite constant.

This makes the noise from importance sampling estimates also bounded. Hence, all

the noises in our performance estimates are independent, bounded, and mean zero.

To satisfy Requirement 2, note that as Φ⊤Φ is an inner product matrix, it must

be positive semi-definite. Further, as the Fourier basis creates linearly independent

features, when k > d (i.e., it has more samples than number of parameters) the matrix

will have full column-rank. Combining these two points it can be seen that Φ⊤Φ is a

positive-definite matrix and as the eigenvalues of (Φ⊤Φ)−1 are just the reciprocals of

the eigenvalues of Φ⊤Φ, the matrix (Φ⊤Φ)−1 is also positive-definite. The second half

of Requirement 2 is trivially satisfied as all the values of ϕ(x) are in [−1/C, 1/C].

Finally, note that when ϕ : N→ R1×d is a Fourier basis then ∀x ∈ R, ϕ(x)ϕ(x)⊤ =

1. To see why, notice from (4.15) that

ϕ(x)ϕ(x)⊤ =
d∑

n=1

(
sin(2πnx)

C

)2

+
d∑

n=1

(
cos(2πnx)

C

)2

+

(
1

C

)2

=

∑d
n=1

(
sin2(2πnx) + cos2(2πnx)

)
+ 1

C2

(a)
=

d+ 1

C2
= 1, (4.17)

where (a) follows from the trignometric inequality that ∀x ∈ R sin2(x) + cos2(x) = 1.

Now we are ready for the complete proof. For brevity, we define

C :=
[
Ĵ(π, k + δ)− ŝt∗

1−α/2, Ĵ(π, k + δ)− ŝt∗
α/2

]
,

108

J := J(π, k + δ), and Ĵ := Ĵ(π, k + δ), and expand the LHS of (4.16):

Pr (J ∈ C) =Pr
(
Ĵ − ŝt∗

1−α/2 ≤ J ≤ Ĵ − ŝt∗
α/2

)
=Pr

(
−ŝt∗

1−α/2 ≤ J − Ĵ ≤ −ŝt∗
α/2

)
=Pr

(
ŝt∗

1−α/2 ≥ Ĵ − J ≥ ŝt∗
α/2

)
=Pr

(
t∗
1−α/2 ≥

Ĵ − J

ŝ
≥ t∗

α/2

)
.

=Pr
(
t∗
1−α/2 ≥ t ≥ t∗

α/2

)
=Pr

(
t ≤ t∗

1−α/2

)
− Pr

(
t ≤ t∗

α/2

)
. (4.18)

To simplify (4.18), let b = ϕ(k+ δ)⊤. Under this instantiation of b, the null hypothesis

b⊤w in Section 4.11.2.0.1 for our setting corresponds to ϕ(k + δ)w, which is the true

future performance under Assumption 3. Further, for this instantiation of b, note from

(4.17) that b⊤b = 1. Now, it can be seen from (4.14) that V̂f = b⊤V̂ b, and V̂ ∗
f = b⊤V̂ ∗b.

Thus, t = tb and t∗ = t∗
b . Finally, note that as σ∗ corresponds to the Rademacher

random variable, E[σ∗3] = 0.

Therefore, leveraging Lemma 1, in the limit, for any x, we can substitute Pr(t < x)

with Pr(t∗ < x) in (4.18). This substitution yields

Pr (J ∈ C)→ Pr
(
t∗ ≤ t∗

1−α/2

)
− Pr

(
t∗ ≤ t∗

α/2

)
= (1− α/2)− (α/2)

= 1− α.

Notice that using the Fourier basis, we were able to satisfy the condition that

b⊤b = 1 directly. This allowed us to leverage Lemma 1 without much modification.

However, as noted by Djogbenou et al. (2019), the constraint on b⊤b is not necessary

and was used to simplify the proof.

109

CHAPTER 5

ACTION-DEPENDENT NON-STATIONARITY

Methods for sequential decision making are often built upon a foundational as-

sumption that the underlying decision process is stationary (Sutton and Barto, 2018a).

While this assumption was a cornerstone when laying the theoretical foundations of

the field, it is seldom true for real-world problems. Using the taxonomy proposed by

Khetarpal et al. (2020), such non-stationarity can be broadly classified as (a) Passive:

where the changes to the system are induced only by external (exogenous) factors, (b)

Active: where the changes result due to the agent’s past interactions with the system,

or (c) Hybrid: where both passive and active changes can occur together.

When the transition dynamics and the reward function of the decision process are

changing, even the fundamental problem of policy evaluation is challenging. If changes

can be abrupt and arbitrary, then there is not much hope of estimating what a policy’s

future performance will be. However, when the underlying changes are structured,

can their affect on a policy’s performance be extracted without requiring estimation

of the true underlying non-stationary environment? This raises the main question of

interest:

How do we provide a unified procedure for (off) policy evaluation amidst active,

passive, or hybrid non-stationarity, when there is a structure in the underlying

changes?

Motivation: Both active and passive non-stationary are ubiquitous in real-world

problems. For example, prior work has proposed using reinforcement learning (RL)

110

for automated healthcare for patients diagnosed with type-1 diabetes (Bastani, 2014),

sepsis (Saria, 2018), HIV (Ernst et al., 2006), etc. These methods consider optimizing

treatments either individually for each patient, or at a population level. (a) When

considering patients individually, often each day of interaction is considered to be an

independent episode (Bastani, 2014; Thomas et al., 2019b). These methods manifest

stationarity by assuming that the interaction pattern of the patient is the same each

day. However, notice that independence across episodes is clearly violated as the

state of the patient at the start of each day is dependent on the decisions taken at

the end of the previous day. This results in active non-stationarity. Additionally,

the physiology and behavior of a patient varies with age, and therefore age is an

important feature of the state that changes across episodes, thereby also resulting in

passive non-stationarity. (b) At the population level, interactions with each patient

are considered to be an independent episode. When considering data collected over

extended periods, not only do the healthcare facilities change over time, but public

health also continuously evolves based on the treatments made available in the past,

thereby resulting in hybrid non-stationarity.

Similar to automated healthcare, other applications like online education, product

recommendations, and in fact almost all human-computer interaction systems need to

not only account for the continually drifting behavior of the user demographic but

also how the preferences of users may change due to interactions with the system

(Theocharous et al., 2020). Even social media platforms need to account for the

partisan bias of their users that changes due to both external political developments

and increased self-validation resulting from previous posts/ads suggested by the

recommender system itself (Cinelli et al., 2021; Gillani et al., 2018). Similarly, motors

in a robot suffer wear and tear over time not only based on natural corrosion but also

on how vigorous the past actions were. These present a range of applications that are

subject to hybrid non-stationarity.

111

However, conventional off-policy evaluation methods (Precup, 2000; Jiang and Li,

2015; Xie et al., 2019) predominantly focus on the stationary setting. These methods

assume availability of either (a) resetting assumption to sample multiple sequences of

interactions from a stationary environment with a fixed starting state distribution (i.e.,

episodic setting), or (b) ergodicity assumption such that interactions can be sampled

from a steady-state/stationary distribution (i.e., continuing setting). For the problems

of our interest, methods based on these assumptions may not be viable. For e.g., in

automated healthcare, we have a single long history for the evolution of public health,

which is neither in a steady state distribution nor can we reset and go back in time to

sample another history of interactions.

Contributions: In this work, we focus on the fundamental challenge of policy

evaluation amidst structured changes due to active, passive, or hybrid non-stationarity.

To the best of our knowledge, our work presents the first steps towards addressing

this in both the off-policy and the on-policy settings. We provide:

• A unified formulation of different forms of nonstationarity, and discuss the assump-

tions necessary for tractability.

• A procedure for policy evaluation that avoids the complexities of directly modeling

the nonstationary environment.

• A variance reduction procedure for the non-stationary setting that can help mitigate

the high-variance resulting from the use of off-policy data.

We call the proposed method OPEN: off-policy evaluation for non-stationary

domains. OPEN primarily relies upon two key insights: (a) For active/hybrid non-

stationarity, as the underlying changes may dependend on past interactions, the

structure in the changes observed when executing the data collection policy can be

different than if one were to execute the evaluation policy. To address this challenge,

OPEN makes uses counterfactual reasoning twice and permits reduction of this off-

112

policy evaluation problem to an auto-regression based forecasting problem. (b) Despite

reduction to a more familiar auto-regression problem, in this setting naive least-squares

based estimates of parameters for auto-regression suffers from high variance and can

even be asymptotically biased. Finally, to address this challenge, OPEN uses a

novel importance-weighted instrument-variable (auto-)regression technique to obtain

asymptotically consistent and lower variance parameter estimates.

Importantly, instead of assuming that all changes are due to external factors, our

proposed methods can account for the changes in the environment caused by the

agent’s past decisions. As we discuss later in Figure 5.2, this can not only help in the

identification of policies that may be actively causing harm or damage, but may also

enable control of non-stationary processes.

5.1 Notation

We build upon the formulation used by past work (Xie et al., 2020a; Chandak et al.,

2020b) and consider the setting wherein an agent interacts with a lifelong sequence of

partially observable Markov decision processes (POMDPs), (Mi)
∞
i=1. However, unlike

prior problem formulations, we account for active and hybrid non-stationarity by

considering a Markov structure where the POMDP Mi+1 is dependent both on the

previous POMDP Mi and the decisions made by the agent while interacting with Mi.

For simplicity of presentation, we will often ignore the dependency of Mi+1 on Mi−k

for k > 0, although our results can be extended to settings with k > 0.

Notation: LetM be a finite set of POMDPs. Each POMDP Mi ∈M is a tuple

(O,S,A,Ωi, Pi, Ri, µi), where O is the set of observations, S is the set of states, and A

is the set of actions, which are the same for all the POMDPs inM. For simplicity of

notation, we assumeM,S,O,A are finite sets, although our results can be extended

to settings where these sets are infinite or continuous. Let Ωi : S ×O → [0, 1] be the

observation function, Pi : S ×A×S → [0, 1] be the transition function, µi : S → [0, 1]

113

be the starting state distribution, and Ri : S × A → [−Rmax, Rmax] be the reward

function with 0 ≤ Rmax <∞.

Let π : O × A → [0, 1] be any policy and Π be the set of all policies. Let

Hi := (St
i , O

t
i , A

t
i, R

t
i)

T
i=1 be a sequence of at most T interactions in Mi, where Ot

i , A
t
i, R

t
i

are the random variables corresponding to the observation, action, and reward at

the step t. Let Gi :=
∑T

t=1R
t
i be an observed return and Ji(π) := Eπ[Gi|Mi] be the

performance of π on Mi. Let H be the set of possible interaction sequences, and

finally let T :M×H×M→ [0, 1] be the ‘meta-transition’ function that governs the

non-stationarity in the POMDPs. That is, T (m,h,m′) = Pr(Mi+1=m′|Mi=m,Hi=h).

We provide an illustration of the control process in Figure 5.1.

5.2 Problem Statement:

We look at the fundamental problem of evaluating the performance of a policy

π in the presence of non-stationarity. Let (Hi)
n
i=1 be the data collected in the past

by interacting using policies (βi)
n
i=1. Let Dn be the dataset consisting of (Hi)

n
i=1 and

the probabilities of the actions taken by (βi)
n
i=1. With a slight abuse of notation we

define Dataset Dn using trajectory variable Hi := (Ot
i , A

t
i, R

t
i)

T
i=1 as in practice we do

not have access to the true underlying state variable. Given Dn, we aim to evaluate

the performance of π if it is deployed for the next L future episodes (each a different

POMDP), that is

J (π) := Eπ

[
n+L∑

k=n+1

Jk(π)

∣∣∣∣∣(Hi)
n
i=1

]
. (5.1)

We call it the on-policy setting if ∀i, βi = π, and the off-policy setting otherwise.

Notice that even in the on-policy setting, naively aggregating observed performances

from (Hi)
n
i=1 may not be indicative of J (π) as Mk for k > n may be different than

M ∈ (Mi)
n
i=1 due to non-stationarity.

114

- Allows resampling
+ No structural assumptions

+ No resampling possible
- Structural assumptions

Stationary decision process Non-stationary decision process

Figure 5.1. (Left) Control graph for interaction in a stationary POMDP, where
each column corresponds to one time step. Here, independent episodes from the
same POMDP can be resampled. (Right) Control graph that we consider for a
non-stationary decision process, where each column corresponds to one episode. Here,
the agent interacts with a sequence of related POMDPs (Mi)

n
i=1. In the absence of

red arrows, the change from Mi to Mi+1 is independent of the past decisions and
is governed only by external factors (passive non-stationarity). The presence of red
arrows indicated that Mi+1 can also be dependent on the past decisions made in Mi

(active non-stationarity).

5.3 Related Work

Recent methods that tackle non-stationarity only consider passive changes that are

due to some external factor (Doshi-Velez and Konidaris, 2016; Chandak et al., 2020b;

Xie et al., 2020a; Poiani et al., 2021). While these methods present an important

stepping stone, such methods may result in catastrophic outcomes if used as-is in

real-world settings that are subject to active (or hybrid) non-stationarity. We provide

a simple illustrative example of this type of failure in Figure 5.2. Additionally, as we

discuss in Section 5.4, alternative approaches such as modeling the problem as a large

stationary POMDP or as a continuing average-reward MDP are not viable.

Non-stationarity can also be observed in multi-agent systems and games due to

different agents/players interacting with the system. However, often the goal in these

other areas is to search for (Nash) equilibria, which may not even exist under hybrid

non-stationarity. Non-stationarity may also result due to artifacts of the learning

115

Figure 5.2. Consider a robot that can perform a task each day either by ‘walking’
or ‘running’. A reward of 8 is obtained upon completion using ‘walking’, but ‘running’
finishes the task quickly and results in a reward of 10. However, ‘running’ wears out
the motors, thereby increasing the time to finish the task the next day and reduces the
returns for both ‘walking’ and ‘running’ by a small factor, α ∈ (0, 1). Here, methods
for tackling passive non-stationarity will track the best policy under the assumption
that the changes due to damages are because of external factors and would fail to
attribute the cause of damage to the agent’s decisions. Therefore, as on any given
day ’running’ will always be better, every day these methods will prefer ’running’
over ’walking’ and thus aggravate the damage. Since the outcome on each day is
dependent on decisions made during previous days (active non-stationarity) this is
effectively a task with a single lifelong episode, where ‘walking’ might be better in
the long run. Finding a better policy first requires a method to evaluate a policy’s
(future) performance, which is the focus of this work.

116

algorithm even when the problem is stationary. While relevant, these other research

areas are distinct from our setting of interest and we discuss them and other related

work in more detail in Section 2.4.

One may also wonder if the average-reward/continuing setting (Sutton and Barto,

2018a) could be useful for our problem of interest. Unfortunately, the ergodicity

assumption necessary for the average-reward setting is often violated because of the

non-stationarity in the underlying decision process. For instance, in the healthcare

example discussed in the introduction, a state with an earlier age cannot be revisited.

In multi-agent systems, non-stationarities may be induced by other agents trying

to influence others (Xie et al., 2020b; Wang et al., 2021). To understand these methods

in the context of our work, consider that there is a single lifelong episode in a ‘mega’

stationary POMDP comprised of all possible M ∈M. From this point of view, their

method can be seen to be performing (soft) Q-learning/actor-critic in the continuing

setting, where the state is the concatenation of the observation and the estimate of the

unobserved component z, estimated from a fixed number of past interactions. As this

is analogous to maximizing discounted returns in the continuing setting, estimating

the Q-values here would ideally require the ergodicity assumption to revisit different

o and z values multiple times, which may not be feasible in many settings.

5.4 Understanding Structural Assumptions

A careful reader would have observed that instead of considering interactions with

a sequence of POMDPs (Mi)
n
i=1 that are each dependent on the past POMDPs and

decisions, an equivalent setup might have been to consider a ‘chained’ sequence of

interactions (H1, H2, ..., Hn) in a single episode of some ‘mega’ POMDP capturing

all M ∈ M. Consequently, J (π) would correspond to the expected future return

given the history (Hi)
n
i=1. Thus, J (π) could have been approximated using existing

117

methods if one could re-sample multiple, independent, sequences of interaction starting

from µ1.

However, ‘chaining’ (Hi)
n
i=1 results in only a single lifelong sequence of interactions.

Without the ability to resample another sequence, it may be infeasible to estimate

J (π) as future outcomes can be arbitrarily different from the past. Notice that the

continuing/average-reward setting is not viable either because it relies on an ergodicity

assumption that does not necessarily hold in the presence of non-stationarity. For

instance, in the earlier example for automated healthcare personalized for individuals,

it may not be possible to revisit the state of a patient at an earlier age.

In the following, we show how considering a sequence of POMDPs instead permits

splitting this single interaction sequence into multiple (dependent) fragments, with

additional structure linking together the fragments, thereby making the problem

feasible. Let ϕi ∈ Φ be some statistic associated with POMDP Mi for all i > 0 such

that there is no uncertainty in Ji(π) once ϕi is known, i.e., there exists a deterministic

mapping from ϕi to Ji(π). Therefore, if ϕk for k > n can be obtained then these

estimates of ϕk can help towards estimating J (π). We present some examples of ϕi

in the following.

Complete model: If ϕi := Mi then Ji(π) can be obtained directly by evaluating

π on Mi. However, obtaining Mi can be impractical and thus we do not consider this

ϕi any further in this work.

Partial model (Hidden parameter): Analogous to HiP-MDPs (Doshi-Velez

and Konidaris, 2016; Xie et al., 2020a), if zi is an unobserved parameter of Mi that

induces non-stationarity then we can define ϕi := zi. For instance, the motor condition

in the example in Figure 5.2.

Model-free (Policy performance): Instead of relying upon some intermediate

statistics of the model, we can also consider a model-free approach wherein ϕi :=

(Ji(π), π).

118

In all three cases, observe that for any statistic ϕ, and ∀i > 0, when executing a

policy π′ ∈ Π throughout, there exists a sequence of Fi : Φ× Π→ ∆(Φ), where ∆(Φ)

is a distribution over Φ, such that,

ϕi+1 ∼ Fi(ϕi, π
′). (5.2)

Implicitly, Fi captures the effect of both the underlying passive and active non-

stationarity by modeling the conditional distribution of a statistic ϕi+1 given ϕi, when

π′ is executed. For ϕi = (Ji(π), π), Fi models how J(π) changes for a policy π when

executing a different policy π′. As we will discuss later, this model-free free setting

is particularly appealing as it directly captures the impact of non-stationarity on a

policy’s performance.

Notice that passive non-stationarity is a special case of (5.2) wherein π′ does not

influence the outcome of Fi. That is,

∀π, π′ ∈ Π2, ∀i > 0, Fi(ϕ, π)
D
= Fi(ϕ, π

′),

where D
= represents equality in distribution. Similarly, depending on ϕ, one may obtain

stationarity if

∀i > 0, ϕi+1 = ϕi.

While a sequence of functions (Fi)
n
i=1 in (5.2) provides complete generality, it does not

yet enforce any useful structure as for i > n, Fi could still be arbitrary. Therefore, to

make the problem tractable, we assume that the effect of non-stationarity on ϕ can

be modeled using a fixed F := Fk = Fj for all k, j.

119

Figure 5.3. (Left) Considering structured changes in z (blue arrow) might
often be more intuitive. However, as J(π) estimation is ultimately required, unless
performance of a policy also has some structure (green arrows) given z, generalizing
across (potentially unseen) z’s may not be possible. Structured changes for blue and
green arrows consequently results in structured changes in J(π) (dashed-blue arrows).
For example, if the performance J(π) of a policy changes (Lipschitz) smoothly with
z, then smooth changes between z values automatically also imply smooth changes
between J(π) values. (Right) When executing a policy π, say z changes as zi = i,
and Ji(π) changes periodically as sin(zi). Here, even though both z and J change
smoothly, changes in zi+1 can be modeled using one past term (i.e, zi), but changes in
Ji+1(π) cannot be modeled only using Ji(π) (which we denote as p = 1). Making F a
function of the past J(π) sequence (here, Ji(π) and Ji−1(π), denoted as p = 2) can
alleviate such issues.

Assumption 5. ∀m ∈M such that the statistic associated with m is ϕi, there exists

F : Φ× Π→ ∆(Φ), where

∀i, F(ϕi, π
′)(ϕi+1) = Pr(ϕi+1|Mi = m; π′).

Intuitively, Assumption 5 imposes a higher-order stationarity condition under

which non-stationarity can result in changes over time, but the way the changes happen

is fixed. For example, in the healthcare setting where the physiology of a patient might

change over days (Mi)
∞
i=1, Assumption 5 states that how the unobserved factor (ϕi = zi)

governing the non-stationarity changes, subject to treatment via π, is the same. Or

alternatively, (the distribution of) the outcome ϕi+1 = Ji+1(π) of a treatment on the

i+ 1th day given that the outcome of that treatment on the ith day was ϕi = Ji(π) is

120

the same ∀i > 0. When ϕi = Mi, then F is related to the ‘meta-transition’ function T .

Roughly, the tuple (ϕ, π, ϕ′) for the non-stationary process can be viewed analogous

to the (s, a, s′) tuple in the stationary setting.

In some cases the definition of F may be restrictive, e.g., see Figure 5.3. Therefore,

instead of making F dependent only on ϕi, one can redefine F : Φp×Π→ ∆(Φ). This

permits more complex functions that model changes in ϕ conditioned on a sequence

of the past p values of ϕ. However, for simplicity, to present the key ideas we will

consider F : Φ× Π→ ∆(Φ).

We provide some examples in Figure 5.4 to demonstrate few settings to discuss

the applicability of this assumption.

Figure 5.4. In this figure we plot different kinds of performance trends and discuss
the applicability of Assumption 5 for each. The red curve corresponds to the forecast
obtained using an auto-regressive model. (Left) In many cases where the performance
of a policy is smoothly changing over time (for e.g., drifts in interests of an user
that a recommender system needs to account for), looking at the past performances
can often provide indication of how the performance would evolve in the future.
(Middle) Changes in performances does not necessarily have to be smooth. What
Assumption 5 enforces is that the changes have some structure which can be generalized
to make predictions about how the performance would change in the future. Here,
the performance jumps between different values (for e.g., if there is discontinuous
change in the underlying system), but till their is some structure in the changes, it
can be leveraged to make predictions about the future performances as well. (Right)
While Assumption 5 can be applicable in many setting, there can be settings where
this assumption does not hold. For example, if a motor of an industrial system is
degrading over time but this degradation has no effect on the observable performance,
until the point when the motor breaks down and the performance drops completely.
In such cases, just looking at past performances may not be sufficient to infer how
performance will change in the future.

121

Figure 5.5. A high-level illustration of the proposed approach for estimating J (π).
As we are only evaluating a particular policy π, we have removed the explicit depen-
dence of π on both F and ϕ for a cleaner illustration.

5.5 Idea in a Nutshell

To evaluate J (π) we do not have any interaction data with the future POMDPs

(Mi)
n+L
i=n+1. Therefore, we use Dn to extract the structure in how ϕ changes due to the

hybrid non-stationarity, and use it to predict the values of (Ji(π))n+L
i=n+1. The proposed

approach can be divided into three broad steps, as illustrated using three arrow colors

in Figure 5.5.

Red: Use (Hi)
n
i=1 to infer the values of (ϕi)

n
i=1 associated with POMDPs (Mi)

n
i=1

(and the evaluation policy π). That is, infer the unobserved parameter when ϕi = zi,

or infer the policy’s past performances when ϕi = (Ji(π), π).

Blue: Leveraging the structure that there is a fixed F (Assumption 5), use auto-

regression on the inferred values of (ϕi)
n
i=1 to estimate F , i.e., how ϕ changes due

to external factors (passive non-stationarity) and due to the execution of π (active

non-stationarity). Using this estimate for F , predict what (ϕi)
n+L
i=n+1 will be when π is

deployed in the future.

Green: Infer the performances (Ji(π))n+L
i=n+1 using the predicted values of (ϕi)

n+L
i=n+1.

In the model-free setting, where Ji(π) is already a part of ϕi, this step is trivial. When

ϕi = zi this step corresponds to learning a function that can map zi to Ji(π).

122

5.6 Model-Free Policy Evaluation

In the following, we discuss the details for the model-free setting where ϕi =

(Ji(π), π), with an emphasis on addressing the challenges of learning F . As we are

only considering evaluating a given π, we will make the dependency of π implicit and

let ϕi := Ji(π) from here on. Using the developed insights as guiding principles, we

will later also provide algorithms for the partial-model setting (ϕi := zi).

When evaluating J (π) for a given policy π, the model-free setting can be ad-

vantageous as the idea in Figure 5.5 requires accounting for changes in a univariate

statistic ϕi = Ji(π), as opposed to the the partial-model setting where ϕi = zi can

be a multivariate statistic with an unknown dimension. However, there are three

immediate challenges that can be observed in the model-free setting:

1. (Ji(π))
n
i=1 could have been directly estimated if we had access to (Mi)

n
i=1. However,

we only have past interactions (Hi)
n
i=1 by possibly different policies (βi)

n
i=1.

2. While Assumption 5 provides a structure F(Ji(π), π′) for a fixed π′, the underlying

changes that occurred so far may be dependent on multiple, different, (βi)
n
i=1 through

(F(Ji(π), βi))
n
i=1. Therefore, the effect of underlying changes on (Ji(π))

n
i=1 so far

may not directly reflect the changes that might occur when deploying π in the

future.

3. How can we recover F(·, π) such that it can be used to estimate (Ji(π))
n+L
i=n+1, and

thus J (π), when considering executing π in the future?

5.6.1 Counterfactual Reasoning

To estimate (Ji(π))
n
i=1 when POMDPs (Mi)

n
i=1 are not available, we propose using

the collected data Dn. Particularly, we aim to counterfactually predict what the

performance of π would have been, had π been executed on Mi. To do so, we make the

following standard support assumption that says that any action that is likely under

π is also sufficiently likely under the policy βi for all i.

123

Assumption 6. ∀o ∈ O,∀a ∈ A, and ∀i ≤ n, π(o,a)
βi(o,a)

exists and is bounded above by a

(possibly unknown) constant c.

Under Assumption 6, an unbiased estimate of Ji(π) can be obtained using common

off-policy evaluation methods like importance sampling (IS) or per-decision importance

sampling (PDIS) (Precup, 2000),

∀i, Ĵi(π) :=
T∑
t=1

ρtiR
t
i, where, ρti :=

t∏
j=1

π(Oj
i , A

j
i)

βi(O
j
i , A

j
i)
. (5.3)

Ĵi(π) provides us with an estimate of ϕi = Ji(π) associated with each Mi and policy

π, as required for the red arrows in Figure 5.5.

5.6.2 Double Counterfactual Reasoning

Having obtained the estimates for (Ji(π))
n
i=1, we now aim to estimate how the

performance of π changes due to the underlying hybrid non-stationarity. Recall from

Assumption 5 that the changes in the performance of π, when executing π, can be

modeled as

∀i, Ji+1(π) ∼ F(Ji(π), π). (5.4)

Equivalently, Ji+1(π) in (5.4) can be expressed as follows without loss of generality:

∀i, Ji+1(π) = f(Ji(π); θπ) + ξ(Ji(π);ωπ), (5.5)

where f(Ji(π); θπ) = Eπ [Ji+1(π)|Ji(π)] and ξ(Ji(π);ωπ) is a mean zero random variable.

Parameters θπ ∈ Θ and ωπ depend on π, and can thus model different types of changes

when executing different policies.

If pairs of (Ji(π), Ji+1(π)) are available when the transition between Mi and Mi+1

occurs due to execution of π, then one could auto-regress Ji+1(π) on Ji(π) to estimate

124

f(·; θπ) and model the changes in the performance of π. However, the sequence

(Ĵi(π))
n
i=1 obtained from (5.3) cannot be used as-is for auto-regression. This is because

the changes that occurred between Mi and Mi+1 are associated with the execution of

βi, not π.

For example, recall the toy robot example in Figure 5.2. If data was collected by

mostly ‘running’, then the performance of ‘walking’ would decay as well. Directly auto-

regressing on the past performances of ‘walking’ would result in how the performance

of ‘walking’ would change when actually executing ‘running’. However, if we want to

predict performances of ‘walking’ in the future, what we actually want to estimate is

how the performance of ‘walking’ changes if ‘walking’ is actually performed.

To resolve the above issue, we ask another counter-factual question: What would

the performance of π in Mi+1 have been had we executed π, instead of βi, in Mi?

To resolve the above issue, we ask another counter-factual question: What would

the performance of π in Mi+1 have been had we executed π, instead of βi, in Mi?

In the following theorem we show how this question can be answered with a second

application of the importance ratio ρi := ρTi .

Theorem 1. Under Assumptions 5 and 6, ∀m ∈M such that the performance J(π)

associated with m is j,

Eπ [Ji+1(π)|Ji(π) = j] = Eβi,βi+1

[
ρiĴi+1(π)

∣∣Mi = m
]
.

See Section 5.10.1 for the proof. Intuitively, Theorem 1 uses ρi to first correct

for the mismatch between π and βi that influences how Mi changes to Mi+1 due to

interactions Hi. Secondly, Ĵi+1 corrects for the mismatch between π and βi+1 for the

sequence of interactions Hi+1 in Mi+1.

125

5.6.3 Importance Weighted IV-Regression

An important advantage of Theorem 1 is that given Ji(π), ρiĴi+1(π) provides an

unbiased estimate of Eπ [Ji+1(π)|Ji(π)], even though π may not have been used for

data collection. This permits using ρiĴi+1(π) as a target for the prediction of the next

performance given Ji(π), i.e., to estimate f(Ji(π); θπ) in (5.5).

However, notice that performing regression on the pairs (Xi = Ji(π), Yi =

ρĴi+1(π))
n−1
i=1 may not be directly possible as we do not have Ji(π); only unbiased

estimates Ĵi(π) of Ji(π). This is problematic because in least-squares regression, while

noisy estimates of the target variable Yi are fine, noisy estimates of the input variable

Xi may result in estimates of θπ that are not asymptotically consistent even when the

underlying f in (5.5) is a linear function of its inputs. To see this clearly, consider the

following naive estimator,

θ̂naive ∈ argmin
θ∈Θ

n−1∑
i=1

(
f
(
Ĵi(π); θ

)
− ρiĴi+1(π)

)2
.

Because Ĵi(π) is an unbiased estimate of Jπ, let Ĵi(π) = Ji(π) + ηi, where ηi is mean

zero noise. Let N := [η1, η2, ..., ηn−1]
⊤ and J := [J1(π), J2(π), ..., Jn−1(π)]

⊤. When f is

a linear function of its inputs, the expected value Eπ[Ji+1(π)|Ji(π)] = Jiθπ. Also, as

ρiĴi+1(π) is an unbiased estimator for Ji(π)θπ given Ji(π), let ρiĴi+1(π) = Ji(π)θπ + ζi,

where ζi is mean zero noise. Let N2 := [ζ1, ζ2, ..., ζn−1]
⊤ then θnaive can be expressed

as,

θ̂naive =
(
(J+ N)⊤(J+ N)

)−1

(J+ N)⊤(Jθπ + N2)

=
(
J⊤J+ 2J⊤N+ N⊤N

)−1(J⊤Jθπ + N⊤Jθπ + J⊤N2 + N⊤N2

)
=

(
1

n

(
J⊤J+ 2J⊤N+ N⊤N

))−1(
1

n

(
J⊤Jθπ + N⊤Jθπ + J⊤N2 + N⊤N2

))
.(5.6)

In the limit, using the continuous mapping theorem when the inverse in (5.6) exists,

126

lim
n→∞

θ̂naive =

(
lim
n→∞

1

n

(
J⊤J+ 2J⊤N+ N⊤N

))−1(
lim
n→∞

1

n

(
J⊤Jθπ + N⊤Jθπ + J⊤N2 + N⊤N2

))
.

(5.7)

Observe that both N and N2 are mean zero and uncorrelated with each other and also

with J. Therefore, the terms corresponding to J⊤N, J⊤N2, and N⊤N2 in (5.7) will be

zero almost surely due to Rajchaman’s strong law of large numbers for uncorrelated

random variables (Rajchman, 1932; Chandra, 1991). However, the term corresponding

to N⊤N will not be zero in the limit, and instead roughly result in (average of the)

variances of ηi. Consequently, this results in,

θ̂naive
a.s.−→

(
J⊤J+ N⊤N

)−1 J⊤Jθπ.

Observe that N⊤N in (5.7) relates to the variances of the mean zero noise variables

ηi and this would bias θ̂naive towards zero (if ∀i, ηi = 0, then the true θπ is trivially

recovered). Intuitively, when the variance of ηi is high, noise dominates and the

structure in the data gets suppressed even in the large-sample regime.

Unfortunately, the importance sampling based estimator Ĵi(π) is known to suffer

from high variance (Thomas et al., 2015b). Therefore, θ̂naive can be very biased and

we will not be able to capture the trend in how performances are changing, even in

the limit of infinite data and linear f . The problem may be exacerbated when f is

non-linear.

Bias Reduction: To mitigate the bias stemming from noise in input variables,

we introduce a novel instrument variable (IV) (Pearl et al., 2000) regression method

for tackling non-stationarity. Instrument variables represent some side-information

and were originally used in the causal literature to mitigate any bias resulting due to

spurious correlation, caused by unobserved confounders, between the input and the

target variables. For mitigating bias in our setting, IVs can intuitively be considered

as some side-information to ‘denoise’ the input variable before performing regression.

127

For this IV-regression, an ideal IV is correlated with the input variables (e.g., Ĵi(π))

but uncorrelated with the noises in the input variable (e.g., ηi).

We propose leveraging statistics based on past performances as an IV for Ĵi(π).

For instance, using Ĵi−1(π) as an IV for Ĵi(π). Notice that while correlation between

Ji−1(π) and Ji(π) can directly imply correlation between Ĵi−1(π) and Ĵi(π), values

of Ji−1(π) and Ji(π) are dependent on non-stationarity in the past. Therefore, we

make the following assumption, which may easily be satisfied when the consecutive

performances do not change arbitrarily.

Assumption 7. ∀i, Cov
(
Ĵi−1(π), Ĵi(π)

)
̸= 0.

However, notice that the noise in Ĵi(π) can be dependent on Ĵi−1(π). This is

because non-stationarity can make Hi−1 and Hi dependent, which are in turn used to

estimate Ĵi−1(π) and Ĵi(π), respectively. Nevertheless, perhaps interestingly, we show

that despite not being independent, Ĵi−1(π) is uncorrelated with the noise in Ĵi(π).

Theorem 2. Under Assumptions 5 and 6,

∀i, Cov
(
Ĵi−1(π), Ĵi(π)− Ji(π)

)
= 0.

See Section 5.10.2 for the proof. Now using Ĵi−1(π) as an IV for Ĵi(π), IV regression

requires learning an additional function g := R → R parameterized by φ ∈ Ω, and

propose the following IV-regression based estimator,

φ̂n ∈ argmin
φ∈Ω

n∑
i=2

(
g
(
Ĵi−1(π);φ

)
− Ĵi(π)

)2
(5.8)

θ̂n ∈ argmin
θ∈Θ

n−1∑
i=2

(
f
(
g
(
Ĵi−1(π); φ̂n

)
; θ
)
− ρiĴi+1(π)

)2
.. (5.9)

128

Theorem 3. Under Assumptions 5, 6, and 7, if f and g are linear functions of their

inputs, then θ̂n is a strongly consistent estimator of θπ, i.e.,

θ̂n
a.s.−→ θπ.

See Section 5.10.2 for the proof.

Remark 2. Other choices of instrument variables (apart from Ĵi−1(π)) are also viable.

We discuss some alternate choices in Section 5.7.3. These other IVs can be used in

(5.8) and (5.9) by replacing Ĵi−1(π) with the alternative instrument variable.

Remark 3. As discussed earlier, it may be beneficial to model Ji+1(π) using (Jk(π))ik=i−p+1

with p > 1. The proposed estimator can be easily extended by making f dependent on

multiple past terms (Xk)
i
k=i−p+1, where ∀k, Xk := g((Ĵl(π))

k−1
l=k−p; ϕ̂). We discuss this

in more detail in Section 5.7.3. The proposed procedure is also related to methods that

use lags of the time series as instrument variables (Bellemare et al., 2017; Wilkins,

2018; Wang and Bellemare, 2019).

Remark 4. An advantage of the model-free setting is that we only need to consider

changes in J(π), which is a scalar statistic. In such a setting, linear auto-regressive

models have been known to be useful in modeling a wide variety of time-series trends,

e.g., in Figure 5.3, the forecast for p = 2 was obtained using a linear model. Fur-

ther, non-linear functions like recurrent neural networks and LSTMs (Hochreiter and

Schmidhuber, 1997) can also be leveraged using deep instrument variable methods

(Hartford et al., 2017; Bennett et al., 2019; Liu et al., 2020; Xu et al., 2020).

As required for the blue arrows in Figure 5.5, f(·; θ̂n) can now be used to estimate

the expected value Eπ [Ji+1(π)|Ji(π)] under hybrid non-stationarity. Therefore, using

f(·; θ̂n) we can now auto-regressively forecast the future values of (Ji(π))n+L
i=n+1 and

obtain an estimate for J (π). Note that when ϕi = Ji(π), the green arrows in Figure

5.5 correspond to identity functions.

129

Variance Reduction: As discussed earlier, importance sampling results in noisy

estimates of Ji(π). During regression, while high noise in the input variable leads to

high bias, high noise in the target variables leads to high variance parameter estimates.

As discussed earlier, the instrument variable technique helps to mitigate bias. To

mitigate variance, we draw inspiration from the reformulation of weighted-importance

sampling presented for the stationary setting by Mahmood et al. (2014), and propose

the following estimator,

φ̃n ∈ argmin
φ∈Ω

n∑
i=2

ρ̄i

(
g
(
Ĵi−1(π);φ

)
−Gi(π)

)2
, (5.10)

θ̃n ∈ argmin
θ∈Θ

n−1∑
i=2

ρ†i

(
f
(
g
(
Ĵi−1(π); φ̃n

)
; θ
)
−Gi+1(π)

)2
, (5.11)

where, ρ̄i :=
ρi

(
∑n

j=2 ρj)
and ρ†i :=

ρiρi+1

(
∑n−1

j=2 ρjρj+1)
,

where g and φ̂n are the same as defined in (5.8), and Gi+1 is the return observed

for Mi+1. Intuitively, instead of importance weighting the target, to obtain θ̃n we

importance weight the squared error, proportional to how likely that error would be

if π was used to collect the data. Since dividing by any constant does not affect θ̃n,

the choice of ρ̄i ensures that ρ̄i ≤ 1 always, thereby mitigating the variance but still

providing consistency.

Theorem 4. Under Assumptions 5, 6, and 7, if f and g are linear functions of their

inputs, then θ̃n is a strongly consistent estimator of θπ, i.e.,

θ̃n
a.s.−→ θπ.

See Section 5.10.2 for the proof.

130

5.7 Empirical Analysis

This section presents empirical evaluations using several environments inspired by

real-world applications that exhibit non-stationarity. In the following paragraphs, we

briefly discuss each environment.

5.7.1 Environments

We provide empirical results on four non-stationary environments: a toy robot

environment, non-stationary mountain car, diabetes treatment, and MEDEVAC

domain for routing air ambulances. Details for each of these environments are

provided in this section. For all of the above environments, we regulate the ‘speed’

of non-stationarity to characterize an algorithms’ ability to adapt. Higher speed

corresponds to a faster rate of non-stationarity; A speed of zero indicates that the

environment is stationary.

5.7.1.0.1 RoboToy: This domain corresponds to the toy robot scenario depicted

in Figure 5.2. Here, a robot can accomplish a task by either ‘walking’ or ‘running’.

’Running’ performs the task faster than ‘walking’ and thus the reward received at the

end of executing ‘running’ is higher. However, ‘running’ cause more wear and tear on

the robot, degrading the performance of both the options. Since the past interactions

influence the non-stationarity, this is an instance of active non-stationarity. We call

this domain RoboToy-Active.

To test our algorithms, we also simulated a RoboToy-Passive domain, where

there is no active non-stationarity as above. Instead, the reward obtained at the

end of executing the options fluctuate across episodes. Therefore, the changes to the

underlying system are independent of the actions taken by the agent in the past.

For both the active and passive version of this domain, we collect data using a

behavior policy that chooses ‘walking’ more frequently, and the evaluation policy is

designed such that it chooses ‘running’ more frequently.

131

5.7.1.0.2 Non-stationary Mountain Car: In real-world mechanical systems,

motors undergo wear and tear over time based on how vigorously they have been

used in the past. To simulate similar performance degradation, we adapt the classic

(stationary) mountain car domain (Moore, 1990). We modify the domain such that at

every episode the effective acceleration force is decayed proportional to the average

velocity of the car in the previous episode. This results in active non-stationarity as

the change in the system is based on the actions taken by the agent in the past. Similar

to the works by (Thomas, 2015; Jiang and Li, 2015), we make use of macro-actions to

repeat an action 10 times, which helps in reducing the effective horizon length of each

episode. The maximum number of step per episode using these macros is 30.

For our experiments, using an actor-critic algorithm (Sutton and Barto, 2018a) we

find a near-optimal policy π on the stationary version of the mountain car domain,

which we use as the evaluation policy. Let πrand be a random policy with uniform

distribution over the actions. Then we define the behavior policy β(o, a) := 0.5π(o, a)+

0.5πrand(o, a) for all states and actions.

5.7.1.0.3 Type-1 Diabetes Management: Automated healthcare systems

that aim to personalise for individual patients should account for the physiological

changes of the patient over time. To simulate such a scenario we use an open-

source implementation (Xie, 2019) of the U.S. Food and Drug Administration (FDA)

approved Type-1 Diabetes Mellitus simulator (T1DMS) (Man et al., 2014) for the

treatment of Type-1 diabetes, where we induced non-stationarity by oscillating the

body parameters (e.g., rate of glucose absorption, insulin sensitivity, etc.) between two

known configurations available in the simulator. This induces passive non-stationarity,

that is, changes are not dependent on past actions.

Each step of an episode corresponds to a minute (1440 timesteps–one for each

minute in a day) in an in-silico patient’s body and state transitions are governed by a

continuous time non-linear ordinary differential equation (ODE) (Man et al., 2014).

132

This makes the problem particularly challenging as it is unclear how the performance

trends of policies vary in this domain when the physiological parameters of the patient

are changed. Notice that as the parameters that are being oscillated are inputs to a

non-linear ODE system, the exact trend of performance for any policy is unknown.

This more closely reflects a real-world setting where Assumption 3 might not hold, as

every policy’s performance trend in real-world problems cannot be expected to follow

any specific trend exactly–one can only hope to obtain a coarse approximation of the

trend.

For our experiments, using an actor-critic algorithm (Sutton and Barto, 2018a)

we find a near-optimal policy π on the stationary version of this domain, which

we use as the evaluation policy. The policy learns the CR and CF parameters

of the basal-bolus controller discussed in Chapter 3.6.1. Let πrand be a random

policy with uniform distribution over actions. Then we define the behavior policy

β(o, a) := 0.5π(o, a) + 0.5πrand(o, a) for all states and actions.

5.7.1.0.4 MEDEVAC: This domain stands for med ical evacuation using air

ambulances. This domain was developed by Robbins et al. (2020) for optimally routing

air ambulances to provide medical assistance in regions of conflict. This domain divides

the region of conflict into 34 mutually exclusive zones, and has 4 air ambulances to

serve all zones when an event occurs. Based on real-data, this domain simulates the

arrival of different events, from different zones, where each event can have 3 different

priority levels. Serving higher priority events yields higher rewards. If an ambulance is

assigned to an event, it will finish the assignment in a time dependent on the distance

between the base of the ambulance and the zone of the corresponding event. While

engaged in an assignment, that ambulance is no longer available to serve other events.

A good controller decides whether to deploy, and which MEDEVAC to deploy, to

serve any event (at the risk of not being able to serve a new high-priority event if all

ambulances become occupied).

133

The original implementation of the domain assumes that the arrival rates of the

events and the time taken by an ambulance to complete an event follow a Poisson

process with a fixed rate. However, in reality, the arrival rates of different events can

change based on external incidents during conflict. Similarly, the completion rate can

also change based on how frequently an ambulance is deployed. To simulate such non-

stationarity, we oscillate the arrival rate of the incoming high-priority events, which

induces passive non-stationarity. Further, to induce wear and tear, we slowly decay the

rate at which an ambulance can finish an assignment. This decay is proportional to how

frequently the ambulance was used in the past. This induces active non-stationarity.

The presence of both active and passive changes makes this domain subject to hybrid

non-stationarity.

Similar to other domains, we used an actor-critic algorithm (Sutton and Barto,

2018a) we find a near-optimal policy π on the stationary version of this domain, which

we use as the evaluation policy. Let πrand be a random policy with uniform distribution

over the actions. Then we define the behavior policy β(o, a) := 0.5π(o, a)+0.5πrand(o, a)

for all states and actions.

5.7.2 Algorithms Compared

We consider the following algorithms for comparison:

5.7.2.0.1 OPEN: We call our proposed method OPEN, which stands for ‘off-

policy evaluation for non-stationary domains’. This method is based on our bias and

variance reduced estimator developed in (5.10) and (5.11) and is developed to handle

structured passive, active, and hybrid non-stationarity.

5.7.2.0.2 Pro-WLS: As a baseline, we use the algorithm developed in Chapter 3

for tackling passive non-stationarity. Particularly, we use Prognosticator with weighted

least-squares (Pro-WLS) to obtain variance reduction. However, note that as Pro-WLS

134

is designed to provide policy improvement, we only use equation (3.4.5) to evaluate

future performance of a policy.

5.7.2.0.3 WIS: This is the standard weighted importance sampling based esti-

mator that ignores presence of non-stationarity completely.

5.7.3 Implementation and Hyper-parameters

We have established the key insight for how to forecast the next performance based

on a single previous performance, when the true performance trend of a policy can be

modeled auto-regressively using a single past term. However, as noted in Figure 5.3

using more terms can provide more flexibility in the the type of trends that can be

modeled. Therefore, we leverage statistics based on multiple past terms to form the

instrument variable Zi.

One immediate choice for Zi is Ĵi(π). However, we found that the high variance of

IS estimate makes Ĵi(π) a weak instrument variable (Pearl et al., 2000), that is not

strongly correlated with Ji+1(π). Better choices of Zi may be the ones that are strongly

correlated with Ji+1(π) but uncorrelated with the noise in the Ĵi+1(π) estimate. We

found that an alternate choice of Zi composed of the unweighted return Gi and a WIS

estimate for Ji(π) (where the normalization is done only using the importance ratios

from episodes before i) to be more useful. Specifically, we let Zi := [Gi, J̃i(π)], where

J̃i(π) :=
ρiGi∑i
k=1 ρk

.

It can be observed similar to Theorem 2 that this Zi is uncorrelated with the noise

in Ĵi+1(π) as well. Further, the weighted version J̃i(π) suffers less from variance and we

found it to be more strongly correlated with Ji+1(π). Further, often the performance

of the behavior policy is positively/negatively correlated with the performance of the

evaluation policy and thus Gi tends to be correlated with Ji+1(π) as well. One could

also explore other potential IVs; we leave this for future work.

135

Now using past p values of Zi to form the complete instrument variable, where p

is a hyper-parameter, we use the following importance weighted instrument-variable

regression,

φ̃n ∈ argmin
φ∈Ω

n∑
i=p+1

ρ̄i

(
g
(
(Zj(π))

i−1
j=i−p ;φ

)
−Gi(π)

)2
,

θ̃n ∈ argmin
θ∈Θ

n−1∑
i=2p

ρ†i

(
f
((

J̄j(π)
)i
j=i−p+1

; θ
)
−Gi+1(π)

)2
,

where,

J̄i(π) =g
(
(Zj(π))

i−1
j=i−p ; φ̃n

)
, ∀p < i ≤ n,

ρ̄i :=
ρi

(
∑n

j=2 ρj)

ρ†i :=
ρiρi+1

(
∑n−1

j=2 ρjρj+1)
.

Once θ̃n is obtained, we use it to auto-regressively forecast the future performances.

Particularly, we use (J̄k)
n+L
k=n+1 as the predicted performances for the next L episodes,

where

∀i > n, J̄i := f
((

J̄i−k(π)
)p
k=1

; θ̃n

)
.

While our theoretical results were established for the setting where there is only

a single regressor (p = 1), a more generalized theoretical result for p > 1 may be

possible using the concepts of endogenous and exogenous regressors. Particularly,

let [..., Xi, Xi+1, Xi+2, Xi+3, ...], be observations from an AR(2) time-series sequence

where Xi+3 depends on Xi+1 and Xi+2. Here, using Xi+1 as the only instrument

variable for Xi+2 is not possible as Xi+3 is correlated with Xi+1. However, Z = Xi

or even Z = [Xi, Xi+1] may form a valid instrument for Xi+2 as neither the noise in

136

Xi+3 nor the noise in Xi+2 is correlated with at least one component of Z, i.e., Xi.

For precise instrument relevance conditions and additional discussion, we refer the

reader to the works by Abbott (2007); Cameron (2019); Parker (2020). We leave this

theoretical extension for the future work.

5.7.3.0.1 Hyper-parameters: For the Pro-WLS baseline, we use the weighted

least-squares procedure using the Fourier basis features (Chandak et al., 2020b). The

hyper-parameter for this baseline is the number of Fourier terms d that should be used

to estimate the performance trend. We found that setting d to be too high results in

extremely high-variance and setting it to a lower value fails to capture the trend in

performance. Therefore, based on ablation studies in Figure 5.11 we set d = 5 for all

the experiments.

For OPEN, the hyper-parameter corresponds to the number of terms to condition

on during auto-regression. Based on ablation studies in Figure 5.11 we set p = 300

(15% of the number of episodes in the data) for all the experiments.

For each environment, we collect data consisting of 2000 episodes of interaction

using the behavior policy, and predict the expected future returns if executing the

evaluation policy for the next 200 episodes. The behavior policy and the evaluation

policy for each domain are described in Section 5.7.1.

Since the future outcomes are stochastic, to evaluate the true expected future

performance in (5.1), we create digital-clones of the environment after data has been

collected using the behavior policy. Using these clones, we compute the average of 30

possible futures when executing the evaluation policy. This estimate of the expected

future returns are then used as the ground truth for comparison with the predictions

made by the algorithms.

137

5.7.4 Results for Active/Hybrid Non-stationarity

For each environment, we collect data consisting of 2000 episodes of interaction

using the behavior policy, and predict the expected future returns if executing the

evaluation policy for the next 200 episodes. The behavior policy and the evaluation

policy for each domain are described in Section 5.7.1.

Since the future outcomes are stochastic, to evaluate the true expected future

performance in (5.1), we create digital-clones of the environment after data has been

collected using the behavior policy. Using these clones, we compute the average of 30

possible futures when executing the evaluation policy. This estimate of the expected

future returns are then used as the ground truth for comparison with the predictions

made by the algorithms.

5.7.4.1 Single Run

In Figure 5.6 we present a step by step breakdown of the intermediate stages of a

single run of OPEN on the RoboToy-Active domain. It can be observed how initially

the data collecting policy was less frequently taking the option that damages the

robot and hence the performance decline was slower. However, the performance of

the evaluation policy, which more frequently takes the option that damages the robot,

declines faster. OPEN is able to extract such information to detect if the evaluation

policy will cause any active harm, if deployed in the future.

5.7.4.2 Summary Plots

In this section we present a summary of the results across all the domains with

active non-stationarity.

5.7.4.2.1 Bias Analysis Figure 5.7 presents the (absolute) bias incurred by

different algorithms for predicting the future performance of the evaluation policy π.

138

The blue curve corresponds to the performances
Ji(π) for the past episodes, where the data was
collected using a different policy β. Compared to
π, the behavior policy β takes option A (which de-
teriorates the system) less frequently. This results
in a slow decline of performance for π initially,
followed by a faster decline once π is deployed.
The blue and gray curves are unknown to the al-
gorithm.

OPEN first uses historical data to obtain coun-
terfactual estimates of Ji(π) for the past episodes.
One can see the high-variance in these estimates
(notice the change in the y-scale) due to the use
of importance sampling.

Before naively auto-regressing, OPEN first aims to
denoise the past performance estimates using the
first stage of instrument variable regression. Since
p = 300, the first 300 terms were not denoised. It
can be observed that OPEN successfully denoises
the importance sampling estimates.

Using the denoised estimates of past performances,
with the second use of counterfactual reasoning,
OPEN performs the second stage of regression to
forecast the future performance when π will be de-
ployed. It is able to identify that the performance
trend will change/decrease compared to what was
observed in the past.

Figure 5.6. An illustrative step by step breakdown of the stages in the proposed
algorithm OPEN for the RoboToy-Active domain.

139

Figure 5.7. Comparison of different algorithms for predicting the future performance
of evaluation policy π on domains that exhibit active/hybrid non-stationarity. On the
x-axis is the speed which corresponds to the rate of non-stationarity; higher speed
indicates faster rate of change and a speed of zero indicates stationary domain. On
the y-axis is the absolute bias in the performance estimate (lower is better). For
each domain, for each speed, for each algorithm, 30 trials were executed. Discussions
for these plots can be found in Section 5.7.4.2.1. Here, |bias| was computed using
the absolute value of the difference between (a) the predicted future performance
averaged across 30 trials and (b) the ground truth future performance. That is, for an
estimator Ĵ of J , the bias is |J −E[Ĵ]|. Because of this, 30 trials only gives us a point
estimate for bias. (Notice that using the absolute value of the difference between (a)
the predicted future performance for each trial and (b) the true future performance’,
averaged across 30 trials, will provide an estimate of E[|J − Ĵ |], which would not
capture the bias but will be more like the variance (using L1/absolute distance instead
of L2)).

140

Figure 5.8. Comparison of different algorithms for predicting the future performance
of evaluation policy π on domains that exhibit active/hybrid non-stationarity. On the
x-axis is the speed which corresponds to the rate of non-stationarity; higher speed
indicates faster rate of change and a speed of zero indicates stationary domain. On
the y-axis is the mean squared error (MSE) in the performance estimate (lower is
better). For each domain, for each speed, for each algorithm, 30 trials were executed.
Discussions for these plots can be found in Section 5.7.4.2.2.

141

As expected, the baseline method WIS that ignores the non-stationarity completely

fails to capture the change in performances over time. Therefore, while WIS works

well for the stationary setting, as the non-stationarity increase, the biased incurred by

WIS grows.

In comparison, the baseline method Pro-WLS that can only account for passive

non-stationarity captures the trend better than WIS, but still performs poorly in

comparison to the proposed method OPEN that is explicitly designed to handle

active/hybrid non-stationarity.

It is not surprising that when it is known that the domain is stationary, OPEN

method may not be as reliable as WIS. We observe that for the RoboToy-Active

domain OPEN performs the worst for the stationary setting. However, it performs

the best for the MountainCar domain. We believe this good performance is just an

artifact of this domain. WIS is known to be biased for finite samples, and in this

particular setting, it happens to have higher bias than OPEN.

5.7.4.2.2 MSE Analysis Similarly, Figure 5.8 presents the mean-squared error

(MSE) incurred by different algorithms when predicting the future performance of the

evaluation policy π.

As MSE can be broken down in terms of bias and variance, these plots incorporate

the impact of the variance of each estimator as well. For the RoboToy-Active domain,

OPEN performs the best, followed by Pro-WLS, and WIS. While OPEN still performs

well in terms of MSE for MountainCar, we observe that Pro-WLS does not. Since the

bias of Pro-WLS was less than that of WIS for this domain, higher MSE for Pro-WLS

can be attributed to high variance. To understand this, recall that Pro-WLS makes

use of Fourier basis based parametric regression and uses extrapolation to forecast.

Non-autoregressive extrapolation is not bound to follow any structure outside the

support of observed data, and can thus result in unreliable estimates leading to high

variance.

142

For the MEDEVAC domain, we observe that OPEN performs well for speeds of 0

and 1, but despite having the lowest bias for speed=2, OPEN has relatively higher

MSE.

5.7.5 Results for Passive Non-stationarity

While the primary focus of this chapter was to develop methods to handle ac-

tive/hybrid non-stationarity, we observed that the proposed method OPEN also

provides benefits over the earlier algorithm Pro-WLS even when it is known that there

is only passive non-stationarity in the environment.

5.7.5.1 Single Run

Similar to Figure 5.6, in Figure 5.9 we present a step by step breakdown of the

intermediate stages of a single run of OPEN on the RoboToy-Passive domain. Here

the trend in how the performance of the evaluation policy was changing in the past

remains the same in the future. When only passive non-stationarity is present, the

double counter-factual correction performed by OPEN is superfluous. However, it

can be observed that OPEN can still correctly identify the trend and provide useful

predictions of π’s future performance.

5.7.5.2 Summary Plots

In Figure 5.10 we provide bias and MSE analysis of different algorithms on the

domains that exhibit passive non-stationarity. Except for the stationary setting, where

WIS has the best performance overall, we observe that for all other settings in the

plot, OPEN performs better than both Pro-WLS and WIS consistently.

One thing that particularly stands out in these plots is the poor performance of

Pro-WLS, despite being designed for the passive setting. We observed that because

of the choice of parametric regression using the Fourier basis, Pro-WLS tends to

suffer from high bias when the number of Fourier terms is not sufficient to model

143

the underlying trend. Also, if the number of Fourier terms is increased naively, then

they overfit the data and extrapolate poorly, thereby resulting in high-variance. In

contrast, our method is based on an auto-regressive based time-series forecast that is

more robust to the model choice (we kept the number of lag terms for auto-regression

as p = 300 for OPEN for all our experiments).

144

The blue curve corresponds to the performances
Ji(π) for the past episodes. As there is no active
non-stationarity, the choice of actions executed
does not impact the underlying non-stationarity.
Therefore, Ji(π) follows the same trend in future
as it did in the past. The blue and gray curves
are unknown to the algorithm.

OPEN first uses historical data to obtain coun-
terfactual estimates of Ji(π) for the past episodes.
One can see the high-variance in these estimates
(notice the change in the y-scale) due to the use
of importance sampling.

Before naively auto-regressing, OPEN first aims to
denoise the past performance estimates using the
first stage of instrument variable regression. Since
p = 300, the first 300 terms were not denoised. It
can be observed that OPEN successfully denoises
the importance sampling estimates.

Using the denoised estimates of past performances,
with the second use of counterfactual reasoning,
OPEN performs the second stage of regression to
forecast the future performance when π will be
deployed. Use of double-counterfactual is superflu-
ous in the passive setting but OPEN is still able
to correctly predict the future performance.

Figure 5.9. An illustrative step by step breakdown of the stages in the proposed
algorithm OPEN for the RoboToy-Passive domain.

145

Figure 5.10. Comparison of different algorithms for predicting the future performance
of evaluation policy π on domains that exhibit passive non-stationarity. On the x-axis
is the speed, which corresponds to the rate of non-stationarity; higher speed indicates
a faster rate of change and a speed of zero indicates a stationary domain. (TOP) On
the y-axis is the absolute bias in the performance estimate. (Bottom) On the y-axis
is the mean squared error (MSE) in the performance estimate. Lower is better for
all of these plots. For each domain, for each speed, for each algorithm, 30 trials were
executed. Discussion of these plots can be found in Section 5.7.5.

146

Figure 5.11. (Top) Absolute bias in prediction of Pro-WLS for different choices of
its hyper-parameter. (Bottom) Absolute bias in prediction of OPEN for different
choices of its hyper-parameter. For all the plots, lower value is better. Overall, we
observe that OPEN being an auto-regressive method can extrapolate/forecast better
and is thus more robust to hyper-parameters than Pro-WLS that uses Fourier bases
for regression and is not as good for extrapolation.

5.7.6 Ablation Study

In this section we study the sensitivity to hyper-parameters for the proposed

method OPEN and the baseline method Pro-WLS (Chandak et al., 2020b). The

hyper-parameter for OPEN corresponds to the number of past terms to condition on

for auto-regression, as discussed in Remark 3. The hyper-parameter for Pro-WLS

corresponds to the order of Fourier bases required for parametric regression. In Figure

5.11 we present the results for how the performance of the methods vary for different

choices of hyper-parameters.

147

5.8 Conclusion

We took the first steps towards addressing the fundamental question of off-policy

policy evaluation under the presence of hybrid non-stationarity. Towards this goal we

discussed the challenges associated with the availability of what is effectively a single

lifelong sequence of interaction, and the need for structural assumptions to address

this challenge. Finally, using a structural assumption, we developed a model-free based

procedure that provides more accurate forecasts of future outcomes in the presence

of active, passive, and hybrid, non-stationarity. We believe that our method may

not only help in the identification of policies that may be actively causing harm or

damage, but may also enable control of non-stationary processes in the future.

5.9 Limitations and Future Work

It is worth mentioning that our method builds upon techniques from RL, counter-

factual reasoning, and auto-regressive time-series, and thus inherits their limitations,

• Use of trajectory based importance sampling results in high variance off-policy

estimates of Ji(π). While we developed WIS like methods for variance reduction,

it is unclear how to theoretically characterize the amount of bias it induces in the

finite samples regime. One future way to trade-off bias and variance might be to

mix trajectory based importance sampling with marginalized importance sampling

(Yuan et al., 2021).

• We made use of instrument variable regression to denoise performance estimates

of the past. This relied on our choice of instrument variables, which need to be

correlated with the performance we aim to denoise. While the instrument variable

technique causes no bias asymptotically, if the instruments variables are not strongly

correlated, they can significantly increase variance. An important step for future

work will be to take multiple possible IVs and use correlation tests to detect which

IVs might be better suited for the task at hand.

148

• Once the denoised estimates of past performances are available, we use an auto-

regressive time-series model to forecast the expected future performance. Currently,

we use a fixed number of past terms. In the future, we aim to explore heuristics to

set this value adaptively and to investigate other deep models like LSTMs, which

have a longer memory.

5.10 Proofs

5.10.1 Double Counterfactual Reasoning

Theorem 1. Under Assumptions 5 and 6, ∀m ∈M such that the performance J(π)

associated with m is j,

Eπ [Ji+1(π)|Ji(π) = j] = Eβi,βi+1

[
ρiĴi+1(π)

∣∣Mi = m
]
.

Proof. In the following, to make the dependence of trajectories explicit, we will

additionally define ρ(h) and g(h) to be the importance ratios and the return associated

with a trajectory h. Using this notation, it can be observed that,

149

Eπ [Ji+1(π)|Mi] =
∑
hi+1

Pr(hi+1|Mi; π)g(hi+1)

(a)
=
∑
hi+1

∑
mi+1

∑
hi

Pr(hi+1,mi+1, hi|Mi; π)g(hi+1)

(b)
=
∑
hi

Pr(hi|Mi; π)
∑
mi+1

Pr(mi+1|hi,Mi; π)

∑
hi+1

Pr(hi+1|mi+1, hi,Mi; π)g(hi+1)

(c)
=
∑
hi

Pr(hi|Mi; π)
∑
mi+1

Pr(mi+1|hi,Mi)
∑
hi+1

Pr(hi+1|mi+1; π)g(hi+1)

(d)
=
∑
hi

ρ(hi) Pr(hi|Mi; βk)
∑
mi+1

Pr(mi+1|hi,Mi)

∑
hi+1

ρ(hi+1) Pr(hi+1|mi+1; βi+1)g(hi+1)

(e)
=
∑
hi

∑
mi+1

∑
hi+1

Pr(hi|Mi; βi) Pr(mi+1|hi,Mi) Pr(hi+1|mi+1; βi+1)
[
ρ(hi)ρ(hi+1)g(hi+1)

]

= Eβiβi+1
[ρiρi+1Gi+1|Mi]

= Eβiβi+1

[
ρiĴi+1(π)|Mi

]
, (5.12)

where (a) follows from the law of total probability, (b) follows from the chain rule of

probability, (c) follows using conditional independence, (d) follows from the use of

importance sampling to switch the sampling distribution under Assumption 6, and (e)

follows from re-arrangement of terms. Finally, ρi and ρi+1 are the random variables

corresponding the importance ratios in episodes i and i + 1. The random variable

Gi+1 corresponds to the return under β in episode i+ 1.

Now notice that

150

Eπ [Ji+1(π)|Ji(π)] = EM [Eπ[Ji+1(π)|M]|Ji(π)]
(f)
= Eπ[Ji+1(π)|Mi]

(g)
= Eβiβi+1

[
ρiĴi+1(π)|Mi

]
. (5.13)

To see why (f) holds, let M ′ be the subsequent POMDP observed after interacting

with a POMDP M using π. Let J(π) and J ′(π) be the performances of the policy π in

POMDP M and M ′, respectively. Then ∀m ∈M such that the performance of π in

m is equal to J(π), it follows from Assumption 5 (where ϕ is the policy performance)

that Eπ[J
′(π)|M = m] is a fixed value. Now, Mi is a natural choice for such an m

where the performance of π is Ji(π). Finally, (g) follows from (5.12).

Similarly, under a more generalized Assumption 5, when ∀mk ∈ M such that

the statistics associated with (mk)
i
k=i−p are (ϕk)

i
k=i−p, respectively, there exists F :

Φp × Π→ ∆(Φ), such that

∀i > p, F((ϕk)
i
i=i−p, π

′)(ϕi+1) = Pr(ϕi+1|Mi = mi; π
′),

then similar steps as earlier can be used to conclude that

Eπ [Ji+1(π)|(Ji−k(π))
p
k=0] = Eβiβi+1

[
ρiĴi+1(π)|Mi

]
. (5.14)

Note that no additional importance correction is needed in (5.14) compared to (5.13).

The term ρi only shows up to correct for the transition between Mi and Mi+1 due

to the meta-transition function T (m,h,m′) = Pr(Mi+1=m′|Mi=m,Hi=h). This

independence on the choice of p also holds if T is non-Markovian in the previous

Mi values. Although, additional importance correction would be required if T is

dependent on multiple past Hi terms.

151

5.10.2 Importance-Weighted IV-Regression

Theorem 2. Under Assumptions 5 and 6,

∀i, Cov
(
Ĵi−1(π), Ĵi(π)− Ji(π)

)
= 0.

Proof.

∀i, Cov
(
Ĵi(π), Ĵi+1(π)− Ji+1(π)

)
= Eβ

[
Ĵi(π)

(
Ĵi+1(π)− Ji+1(π)

)]
︸ ︷︷ ︸

(I)

− Eβ

[
Ĵi(π)

]
Eβ

[
Ĵi+1(π)− Ji+1(π)

]
︸ ︷︷ ︸

(II)

.(5.15)

Focusing on term (II),

Eβ

[
Ĵi(π)

]
Eβ

[
Ĵi+1(π)− Ji+1(π)

]
= Eβ

[
Ĵi(π)

] (
Eβ

[
Ĵi+1(π)

]
− Ji+1(π)

)
(a)
= Eβ

[
Ĵi(π)

]
(Ji+1(π)− Ji+1(π))

= 0,

where (a) follows from the fact that under Assumption 6, Ĵi+1(π) is an unbiased

estimator for Ji+1(π) (Thomas, 2015). Focusing on term (I) and using the law of total

expectation,

Eβ

[
Ĵi(π)

(
Ĵi+1(π)− Ji+1(π)

)]
= Eβ

[
Ĵi(π)Eβ

[
Ĵi+1(π)− Ji+1(π)

∣∣∣Ĵi(π)]︸ ︷︷ ︸
(III)

]
.

152

Expanding term (III) further using the law of total expectation,

Eβ

[
Ĵi+1(π)− Ji+1(π)

∣∣∣Ĵi(π)] (b)
= Eβ

[
Eβ

[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1, Ĵi(π)
]∣∣∣Ĵi(π)]

(c)
= Eβ

[
Eβ

[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1

]∣∣∣Ĵi(π)]
(d)
= 0,

where in (b) the outer expectation is over the next environment Mi+1 given that

the current performance estimate is Ĵi(π) and that βi was used for interaction in

episode i. The inner expectation is over Ĵi+1(π) and the trajectory used for estimating

Ĵi+1(π) is collected using β in the environment Mi+1. Step (c) follows from the fact

that conditioned on the environment Mi+1, interactions in Mi+1 are independent of

quantities observed in the episodes before i+1. Finally, step (d) follows from observing

that

Eβ

[
Ĵi+1(π)− Ji+1(π)

∣∣∣Mi+1

]
= Eβ

[
Ĵi+1(π)

∣∣∣Mi+1

]
− Ji+1(π)

(e)
= Ji+1(π)− Ji+1(π)

= 0,

where (e) follows from the fact that under Assumption 6, Ĵi+1(π) is an unbiased

estimator of the performance of π for the given environment Mi+1. Therefore both (a)

and (b) in (5.15) are zero, and we conclude the result.

Theorem 3. Under Assumptions 5, 6, and 7, if f and g are linear functions of their

inputs, then θ̂n is a strongly consistent estimator of θπ, i.e.,

θ̂n
a.s.−→ θπ.

153

Proof. For the linear setting, θ̂n can be expressed as,

ϕ̂n ∈ argmin
ϕ∈Φ

n−1∑
i=2

(
Ĵi−1(π)ϕ− Ĵi(π)

)2
(5.16)

θ̂n ∈ argmin
θ∈Θ

n−1∑
i=2

(
J̄i(π)θ − ρiĴi+1(π)

)2
, (5.17)

where J̄i := Ĵi−1ϕ̂n.

Before moving further, we introduce some additional notation.

Xn−2 :=
[
Ĵ1(π), ..., Ĵn−2(π)

]⊤
, Λn−2 := diag([ρ1, ..., ρn−2]),

Xn−1 :=
[
Ĵ2(π), ..., Ĵn−1(π)

]⊤
, Λn−1 := diag ([ρ2, ..., ρn−1]) ,

Xn :=
[
Ĵ3(π), ..., Ĵn(π)

]⊤
, X̄n−1 :=

[
J̄2(π), ..., J̄n−1(π)

]⊤
,

where diag corresponds to a diagonal matrix with off-diagonals set to zero.

In the following, we split the proof into two parts: (a) we will first show that

θ̂n =
(
X⊤

n−2Xn−1

)−1 (
X⊤

n−2Λn−1Xn

)
,

and then (b) using this simplified form for θ̂n we will show that θ̂n
a.s.−→ θπ.

5.10.2.0.1 Part (a) Solving (5.16) in matrix form,

ϕ̂n =
(
X⊤

n−2Xn−2

)−1
X⊤

n−2Xn−1. (5.18)

Similarly, solving (5.17) in matrix form,

θ̂n =
(
X̄⊤

n−1X̄n−1

)−1
X̄⊤

n−1Λn−1Xn. (5.19)

154

Now substituting the value of X̄n−1 into (5.19),

θ̂n =


Xn−2ϕ̂n︸ ︷︷ ︸

X̄n−1


⊤Xn−2ϕ̂n︸ ︷︷ ︸

X̄n−1




−1Xn−2ϕ̂n︸ ︷︷ ︸
X̄n−1


⊤

Λn−1Xn. (5.20)

Using (5.18) to substitute the value of ϕ̂n into (5.20),

θ̂n =


Xn−2

(
X⊤

n−2Xn−2

)−1
X⊤

n−2Xn−1︸ ︷︷ ︸
ϕ̂n


⊤Xn−2

(
X⊤

n−2Xn−2

)−1
X⊤

n−2Xn−1︸ ︷︷ ︸
ϕ̂n




−1

Xn−2

(
X⊤

n−2Xn−2

)−1
X⊤

n−2Xn−1︸ ︷︷ ︸
ϕ̂n


⊤

Λn−1Xn. (5.21)

Using matrix operations to expand the transposes in (5.21),

θ̂n =
((

X⊤
n−1Xn−2

(
X⊤

n−2Xn−2

)
−1X⊤

n−2

)(
Xn−2

(
X⊤

n−2Xn−2

)
−1X⊤

n−2Xn−1

))−1

(
X⊤

n−1Xn−2

(
X⊤

n−2Xn−2

)−1
X⊤

n−2

)
Λn−1Xn. (5.22)

Similarly, using matrix operations to expand inverses in (5.22) (colored underlines are

used to match the terms before expansion in (5.22) and after expansion in (5.23)),

θ̂n =
(
X⊤

n−2Xn−1

)
−1
(
X⊤

n−2Xn−2

)(
X⊤

n−2Xn−2

)
−1
(
X⊤

n−2Xn−2

)(
X⊤

n−1Xn−2

)
−1

(
X⊤

n−1Xn−2

) (
X⊤

n−2Xn−2

)−1 (
X⊤

n−2Λn−1Xn

)
. (5.23)

Notice that several terms in (5.23) cancel each other out, therefore,

θ̂n =
(
X⊤

n−2Xn−1

)−1 (
X⊤

n−2Λn−1Xn

)
. (5.24)

155

5.10.2.0.2 Part (b) Now recall from (5.5) that when f is a linear function,

Ji+1(π) = Ji(π)θπ + Ui+1(Hi),

where Ui+1 is bounded mean zero noise (which depends on the interaction Hi by π).

Using Theorem 1, let Yi+1 := Eπ [Ji+1(π)|Ji(π)] and its unbiased estimate be

Ŷi+1 := ρiĴi+1(π) = ρiρi+1Gi+1. (5.25)

For the regression, since Ĵi(π) is an unbiased estimate of the input Ji(π) and Ŷi+1 is an

unbiased estimate of the target Eπ [Ji+1(π)|Ji(π)], these can be equivalently expressed

as,

Ĵi(π) = Ji(π) + Vi(Hi),

Ŷi+1 = Ji+1(π) +Wi+1(Hi, Hi+1),

where Vi(Hi) is some bounded mean-zero noise (dependent on the unbiased estimate

made using Hi) and Wi+1(Hi, Hi+1) is also a bounded mean-zero noise (dependent on

the unbiased estimate made using Hi and Hi+1). Before moving further, we define

some additional notation,

Yn := [Y3, ..., Yn]
⊤ Un := [U3(H2), ..., Un(Hn−1)]

⊤

Ŷn := [Ŷ3, ..., Ŷn]
⊤ Vn−1 := [V2(H2), ..., Vn−1(Hn−1)]

⊤

Jn−1 := [J2(π), ..., Jn−1(π)]
⊤ Wn := [W3(H2, H3), ...,Wn(Hn−1, Hn)]

⊤.

Using (5.25) note that Ŷn = Λn−1Xn, therefore (5.24) can be expressed as,

θ̂n =
(
X⊤

n−2Xn−1

)−1
(
X⊤

n−2Ŷn

)
. (5.26)

156

Unrolling the value of Ŷn in (5.26) using relations from (5.25),

θ̂n =
(
X⊤

n−2Xn−1

)−1 (
X⊤

n−2 (Yn +Wn)
)

=
(
X⊤

n−2Xn−1

)−1 (
X⊤

n−2 (Jn−1θπ +Un +Wn)
)

=
(
X⊤

n−2Xn−1

)−1 (
X⊤

n−2 ((Xn−1 −Vn−1) θπ +Un +Wn)
)
. (5.27)

Expanding (5.27),

θ̂n = θπ −
(
X⊤

n−2Xn−1

)−1
X⊤

n−2Vn−1θπ +
(
X⊤

n−2Xn−1

)−1 (
X⊤

n−2 (Un +Wn)
)
.(5.28)

Evaluating the value of (5.28) in the limit,

lim
n→∞

θ̂n = θπ − lim
n→∞

(X⊤
n−2Xn−1

)−1
X⊤

n−2Vn−1θπ︸ ︷︷ ︸
(a)

+
(
X⊤

n−2Xn−1

)−1 (
X⊤

n−2 (Un +Wn)
)︸ ︷︷ ︸

(b)

 .

(5.29)

It can be now seen from (5.29) that if in the limit the terms inside the paranthesis are

zero, then we would obtain our desired result. Focusing on the term (a) and using the

continuous mapping theorem,

lim
n→∞

(
X⊤

n−2Xn−1

)−1
X⊤

n−2Vn−1θπ = lim
n→∞

(
1

n
X⊤

n−2Xn−1

)−1(
1

n
X⊤

n−2Vn−1θπ

)

=

(
lim
n→∞

1

n
X⊤

n−2Xn−1

)−1

 lim
n→∞

1

n
X⊤

n−2Vn−1︸ ︷︷ ︸
(c)

 θπ.

(5.30)

Notice that term (c) (5.30) can be expressed as 1
n

∑n−1
i=2 Xi−1Vi. Further, recall from

Theorem 2 that Vi is a mean zero random variable uncorrelated with Xi−1 for all i.

157

Further, Vi and Xi−1 are also bounded for all i as both the rewards and importance

ratios are bounded (Assumption 6), and T is finite. Now, for αi := Xi−1Vi observe

that E[αi] = E[Xi−1E[Vi|Xi−1]] = E[Xi−10] = 0 and thus αi is a bounded and mean

zero random variable ∀i. Therefore, as (c) is an average of α variables, it follows

from Rajchaman’s strong law of large numbers for uncorrelated random variables

(Rajchman, 1932; Chandra, 1991) that term (c) is zero almost surely. Thus,

(
X⊤

n−2Xn−1

)−1
X⊤

n−2Vn−1θπ
a.s.−→ 0.

Similarly, for term (b) in (5.29) observe that both Un and Wn are zero mean random

variables uncorrelated with Xn−2. Therefore, term (b) in (5.29) is also zero in the

limit almost surely. It can now be concluded from (5.29) that

θ̂n
a.s.−→ θπ.

Theorem 4. Under Assumptions 5, 6, and 7, if f and g are linear functions of their

inputs, then θ̃n is a strongly consistent estimator of θπ, i.e.,

θ̃n
a.s.−→ θπ.

Proof. For the linear setting, θ̃n can be expressed as,

ϕ̂n ∈ argmin
ϕ∈Φ

n−1∑
i=2

ρi

(
Ĵi−1(π)ϕ−Gi(π)

)2
. (5.31)

θ̃n ∈ argmin
θ∈Θ

n−1∑
i=2

ρiρi+1

(
J̄i(π)θ −Gi+1(π)

)2
, where J̄i := Ĵi−1ϕ̂n. (5.32)

158

Notice that as dividing the objective by a positive constant does not change the

optima, we drop the denominator terms in

ρ̄i :=
ρi

(
∑n−1

j=2 ρj)

ρi+1

(
∑n−1

k=2 ρk+1)

for the purpose of the analysis. Before moving further, we introduce some additional

notation that extends to notation introduced in the proof of Theorem 3:

Gn := [G3, ..., Gn]
⊤ Λ̄n−1 := diag([ρ2ρ3, ρ3ρ4..., ρn−1ρn]).

Solving (5.31) in matrix form,

ϕ̂n =
(
X⊤

n−2Λn−1Xn−2

)−1
X⊤

n−2Λn−1Gn−1.

=
(
X⊤

n−2Λn−1Xn−2

)−1
X⊤

n−2Xn−1.

Similarly, solving (5.32) in matrix form,

θ̃n =
(
X̄⊤

n−1Λ̄n−1X̄n−1

)−1
X̄⊤

n−1Λ̄n−1Gn.

(a)
=
(
X̄⊤

n−1Λ̄n−1X̄n−1

)−1
X̄⊤

n−1Λn−1Xn, (5.33)

where (a) follows from the fact that ρiρi+1Gi+1 = ρiĴi+1(π). Now substituting the

value of X̄n−1 into (5.33) similar to (5.20) and (5.21) in the proof of Theorem 3,

θ̃n =
((

X⊤
n−1Xn−2

(
X⊤

n−2Λn−1Xn−2

)
−1X⊤

n−2

)
Λ̄n−1

(
Xn−2

(
X⊤

n−2Λn−1Xn−2

)
−1X⊤

n−2Xn−1

))
−1

(
X⊤

n−1Xn−2

(
X⊤

n−2Xn−2

)−1
X⊤

n−2

)
Λn−1Xn. (5.34)

159

Similarly, using matrix operations to expand inverses in (5.34) (colored underlines are

used to match the terms before expansion in (5.34) and after expansion in (5.35)) and

multiplying and dividing by n,

θ̃n =
(
X⊤

n−2Xn−1

)
−1

(
1

n
X⊤

n−2Λn−1Xn−2

)(
1

n
X⊤

n−2Λ̄n−1Xn−2

)
−1

(
1

n
X⊤

n−2Λn−1Xn−2

)

(
X⊤

n−1Xn−2

)
−1

(
X⊤

n−1Xn−2

)(1

n
X⊤

n−2Λn−1Xn−2

)−1 (
X⊤

n−2Λn−1Xn

)
. (5.35)

Now focusing on the term underlined in green, in the limit,

lim
n→∞

1

n
X⊤

n−2Λ̄n−1Xn−2 = lim
n→∞

1

n

n−1∑
i=2

ρiρi+1Ĵi−1(π)Ĵi−1(π)
⊤

(a)
= lim

n→∞

1

n

n−1∑
i=2

Eβi,βi+1
[ρiρi+1]Ĵi−1(π)Ĵi−1(π)

⊤ +
1

n

n−1∑
i=2

εiĴi−1(π)Ĵi−1(π)
⊤

(b)
= lim

n→∞

1

n

n−1∑
i=2

Ĵi−1(π)Ĵi−1(π)
⊤

= lim
n→∞

1

n
X⊤

n−2Xn−2, (5.36)

where in (a) we defined the random variable ρiρi+1 as its expected value Eβi,βi+1
[ρiρi+1]

plus a mean zero noise εi. Step (b) follows from first observing that ρi and ρi+1 are

uncorrelated. Therefore Eβi,βi+1
[ρiρi+1] = Eβi

[ρi]Eβi+1
[ρi+1] = 1 as the expected value

of importance ratios is 1 (Thomas, 2015). Similarly, εi is uncorrelated with Ĵi−1(π),

i.e., the expected value Eβi,βi+1

[
εi|Ĵi−1(π)

]
= Eβi,βi+1

[εi] = 0 for any given Ji−1(π).

(Intuitively, this step can be seen analogous to the derivation of PDIS, where the

expected value of future IS ratios is always one, irrespective of the past events that it has

been conditioned on). Now notice that the random variable ζi := εiĴi−1(π)Ĵi−1(π)
⊤ is

bounded and has mean zero for all i. Therefore, while ζi and ζj may be dependent, they

160

are uncorrelated for all i ̸= j. Using the strong law of large number for uncorrelated

random variables (Rajchman, 1932; Chandra, 1991) the second term in (a) is zero

almost surely.

Similarly, it can be observed that 1
n
X⊤

n−2Λn−1Xn−2 converges to 1
n
X⊤

n−2Xn−2.

Therefore using (5.36) in (5.35), and using the continuous mapping theorem,

θ̃n
a.s.−→

(
X⊤

n−2Xn−1

)
−1

(
1

n
X⊤

n−2Xn−2

)(
1

n
X⊤

n−2Xn−2

)
−1

(
1

n
X⊤

n−2Xn−2

)(
X⊤

n−1Xn−2

)
−1

(
X⊤

n−1Xn−2

)(1

n
X⊤

n−2Xn−2

)−1 (
X⊤

n−2Λn−1Xn

)
. (5.37)

Notice that several terms in (5.37) cancel each other out, therefore,

θ̃n
a.s.−→

(
X⊤

n−2Xn−1

)−1 (
X⊤

n−2Λn−1Xn

)
.

This proof can be completed similarly to the part (b) of the proof of Theorem 3.

161

CHAPTER 6

CONCLUSION AND FUTURE WORK

Many real-world applications present problems that are not stationary. These

applications motivated us to develop tools that do not require the stationarity as-

sumption. Towards this goal, we discussed how this problem may be intractable

unless some assumptions about the structure of the non-stationarity are imposed.

Subsequently, we made several contributions, culminating with principled methods

that can handle active and hybrid non-stationarity while remaining practical even in

stationary settings.

In the presence of structured non-stationarity due to only external factors, we

presented a procedure named Prognosticator that can (a) provide a model-free estimate

of the performance of a policy if that policy is deployed in the future, and (b) proactively

search for a good future policy through a gradient based procedure that maximizes the

future performance. Perhaps surprisingly, we observe that minimizing performance

over some of the data from the past can be beneficial when searching for a policy

that maximizes future performance. We also show how Prognosticator is unbiased

and strongly consistent in the stationary setting, thereby generalizing several existing

methods for the stationary setting.

Many real-world applications are safety critical and thus require performance and

safety guarantees. We formalized the conditions under which safety can be ensured

in the presence of structured non-stationarity due to external factors. Under these

conditions we propose SPIN, the first procedure for safe policy improvement under such

non-stationarities. SPIN first constructed asymptotically valid confidence intervals of

162

a policy’s future performance and then searched for a policy that maximized the lower

bound obtained from this confidence interval. Empirically, we observed that SPIN

provides safe policy improvement even in the finite sample setting and even when

the structure resulting from non-stationarity is misspecified. In comparison, existing

methods for ensuring safety that do not account for non-stationarity result in up to

five times more unsafe behavior than desired.

Finally, we generalized to core idea underlying the previous contributions to

account for a more general class of non-stationarity, where the changes may occur

due to both external factors and due to the past decisions made by the agent. This

setting was particularly challenging as it exposed a completely new feedback loop

that allowed an agent to influence the non-stationarity. Under this setting, we

formalized the fundamental problem of (off-policy) policy evaluation, established

additional assumptions for tractability, and proposed a method, OPEN, to address

this challenge. With OPEN, we took the first steps towards a unified procedure that

can tackle general forms of structured non-stationarities (while remaining effective in

the stationary setting).

6.1 Future Work

While our contributions provided some initial steps to address the challenges

stemming from non-stationarity, we believe that we have only barely scratched the

surface. There are numerous important questions that we have not yet been able to

answer.

• Re-exploration: In the stationary setting, the de-facto strategy for searching

for good policies is to first explore and then exploit. Unfortunately, this strategy

may not be reasonable in the non-stationary setting. As the domain is changing,

the rewards and transitions associated with the parts of the domain that an

agent might have explored before can change later on. This necessitates careful

163

re-exploration to understand what aspects are changing and how to pro-actively

adapt to those changes. Another interesting future avenue might be to explore

such that the collected data enables accurate estimation of the time-series

parameters for any policy’s performance. If the time series model is well specified,

this procedure could potentially mitigate the need for extensive re-exploration.

• Time-series Model Selection: An underlying theme across all the contribu-

tions was to extract the effect of the underlying non-stationarity on a policy’s

performance using a time-series model. In our work, we resorted to hyper-

parameter tuning to choose the right time-series model. In practice, to achieve

more reliability and automation, it would be ideal to have goodness-of-fit based

cross-validation tests to choose the time series model.

• Partial Model of Non-stationarity: The contributions in this thesis were

mostly focused on model-free approaches that do not require access to any known

model of the environment, nor do they aim to estimate the environment from

the data. While this is useful in the cases where accessing/developing good

models of the environment is challenging, there may be better ways to leverage

models of the environment when they are available. Particularly, doubly-robust

methods (Jiang and Li, 2016) have become increasingly popular to combine

(partial-)models with data under the stationarity assumption. One clear direction

of future work would be to determine whether doubly robust methods can be

extended to the non-stationary setting.

• Bellman Recursions: An important drawback of trajectory based importance

sampling is that the resulting mean-squared-error can grow exponentially with

respect to the horizon (Guo et al., 2017). Since our methods directly build upon

these importance sampling methods, our methods inherit this limitation as well.

164

In the stationary setting, there has been recent work that leverages Bellman

recursion for the state visitation distribution to construct importance sampling

estimators that mitigate some of the above problems (Yuan et al., 2021). Is it

possible to extend these ideas to the non-stationary setting?

• Controlling Non-stationary Domains In Chapter 5, we proposed a method

to perform policy evaluation in the presence of structured passive, active, or

hybrid non-stationarity. An important aspect of active/hybrid non-stationarity

is the additional feedback loop that governs how the domain itself changes based

on past interactions. Harnessing this feedback loop can allow policy improvement

by controlling how the underlying non-stationarity evolves. Performing such

policy improvement in a safe and reliable manner also remains an interesting

avenue for future work.

165

BIBLIOGRAPHY

Y. Abbasi, P. L. Bartlett, V. Kanade, Y. Seldin, and C. Szepesvári. Online learning
in Markov decision processes with adversarially chosen transition probability distri-
butions. In Advances in Neural Information Processing Systems, pages 2508–2516,
2013.

M. Abbott. Instrumental variables (IV) estimation: An introduction,
2007. http://qed.econ.queensu.ca/pub/faculty/abbott/econ481/
481note09_f07.pdf.

S. Abdallah and M. Kaisers. Addressing environment non-stationarity by repeating
q-learning updates. The Journal of Machine Learning Research, 2016.

D. Abel, Y. Jinnai, S. Y. Guo, G. Konidaris, and M. Littman. Policy and value
transfer in lifelong reinforcement learning. In International Conference on Machine
Learning, pages 20–29, 2018.

J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 22–31. JMLR. org, 2017.

A. Agarwal, M. Henaff, S. Kakade, and W. Sun. Pc-pg: Policy cover directed
exploration for provable policy gradient learning. Advances in Neural Information
Processing Systems, 33:13399–13412, 2020.

M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel. Contin-
uous adaptation via meta-learning in nonstationary and competitive environments.
arXiv preprint arXiv:1710.03641, 2017.

L. N. Alegre, A. L. Bazzan, and B. C. da Silva. Minimum-delay adaptation in non-
stationary reinforcement learning via online high-confidence change-point detection.
arXiv preprint arXiv:2105.09452, 2021.

H. B. Ammar, R. Tutunov, and E. Eaton. Safe policy search for lifelong reinforcement
learning with sublinear regret. In International Conference on Machine Learning,
pages 2361–2369, 2015.

E. W. Basso and P. M. Engel. Reinforcement learning in non-stationary continuous
time and space scenarios. In Artificial Intelligence National Meeting, volume 7,
pages 1–8. Citeseer, 2009.

166

http://qed.econ.queensu.ca/pub/faculty/abbott/econ481/481note09_f07.pdf
http://qed.econ.queensu.ca/pub/faculty/abbott/econ481/481note09_f07.pdf

M. Bastani. Model-free intelligent diabetes management using machine learning.
Master’s thesis, University of Alberta, 2014.

M. F. Bellemare, T. Masaki, and T. B. Pepinsky. Lagged explanatory variables and
the estimation of causal effect. The Journal of Politics, 79(3):949–963, 2017.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society:
Series B (Methodological), 57(1):289–300, 1995.

A. Bennett, N. Kallus, and T. Schnabel. Deep generalized method of moments for
instrumental variable analysis. arXiv preprint arXiv:1905.12495, 2019.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1st edition, 1996. ISBN 1886529108.

O. Besbes, Y. Gur, and A. Zeevi. Stochastic multi-armed-bandit problem with non-
stationary rewards. In Advances in Neural Information Processing Systems, pages
199–207, 2014.

M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga. Fast differentiable sorting and
ranking. arXiv preprint arXiv:2002.08871, 2020.

P. Bloomfield. Fourier analysis of time series: An introduction. John Wiley & Sons,
2004.

M. Bowling. Convergence and no-regret in multiagent learning. In Advances in Neural
Information Processing Systems, pages 209–216, 2005.

E. Brunskill and L. Li. PAC-inspired option discovery in lifelong reinforcement learning.
In International conference on machine learning, pages 316–324, 2014.

J. Buckman, C. Gelada, and M. G. Bellemare. The importance of pessimism in
fixed-dataset policy optimization. arXiv preprint arXiv:2009.06799, 2020.

A. C. Cameron. Instrument variables, 2019. http://cameron.econ.ucdavis.
edu/e240a/ch04iv.pdf.

J. Carpenter and J. Bithell. Bootstrap confidence intervals: When, which, what? A
practical guide for medical statisticians. Statistics in Medicine, 19(9):1141–1164,
2000.

E. Cetin and O. Celiktutan. Learning pessimism for robust and efficient off-policy
reinforcement learning. arXiv preprint arXiv:2110.03375, 2021.

Y. Chandak, G. Theocharous, C. Nota, and P. S. Thomas. Lifelong learning with
a changing action set. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence, pages 3373–3380, 2020a.

167

http://cameron.econ.ucdavis.edu/e240a/ch04iv.pdf
http://cameron.econ.ucdavis.edu/e240a/ch04iv.pdf

Y. Chandak, G. Theocharous, S. Shankar, S. Mahadevan, M. White, and P. S. Thomas.
Optimizing for the future in non-stationary mdps. International Conference on
Machine Learning, 2020b.

Y. Chandak, G. Theocharous, S. Shankar, M. White, S. Mahadevan, and P. S.
Thomas. Optimizing for the future in non-stationary MDPs. In Proceedings of the
37th International Conference on Machine Learning, 2020c.

T. K. Chandra. Extensions of rajchman’s strong law of large numbers. Sankhyā: The
Indian Journal of Statistics, Series A, pages 118–121, 1991.

T. Cheevaprawatdomrong, I. E. Schochetman, R. L. Smith, and A. Garcia. Solution
and forecast horizons for infinite-horizon nonhomogeneous Markov decision processes.
Mathematics of Operations Research, 32(1):51–72, 2007.

P. Chen, T. Pedersen, B. Bak-Jensen, and Z. Chen. ARIMA-based time series model
of stochastic wind power generation. IEEE Transactions on Power Systems, 25(2):
667–676, 2009.

S. X. Chen, W. Härdle, and M. Li. An empirical likelihood goodness-of-fit test for time
series. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
65(3):663–678, 2003.

W. C. Cheung, D. Simchi-Levi, and R. Zhu. Reinforcement learning under drift. arXiv
preprint arXiv:1906.02922, 2019.

W. C. Cheung, D. Simchi-Levi, and R. Zhu. Drifting reinforcement learning: The
blessing of (more) optimism in face of endogenous & exogenous dynamics. Arxiv.
1906.02922v3, 2020.

S. P. Choi, D.-Y. Yeung, and N. L. Zhang. An environment model for nonstationary
reinforcement learning. In Advances in Neural Information Processing Systems,
pages 987–993, 2000.

Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A Lyapunov-
based approach to safe reinforcement learning. In Advances in Neural Information
Processing Systems, pages 8092–8101, 2018.

M. Cinelli, G. D. F. Morales, A. Galeazzi, W. Quattrociocchi, and M. Starnini. The
echo chamber effect on social media. Proceedings of the National Academy of
Sciences, 118(9), 2021.

V. Conitzer and T. Sandholm. Awesome: A general multiagent learning algorithm
that converges in self-play and learns a best response against stationary opponents.
Machine Learning, 67(1-2):23–43, 2007.

M. Cuturi, O. Teboul, and J.-P. Vert. Differentiable ranking and sorting using optimal
transport. In Advances in Neural Information Processing Systems, pages 6858–6868,
2019.

168

B. C. Da Silva, E. W. Basso, A. L. Bazzan, and P. M. Engel. Dealing with non-
stationary environments using context detection. In Proceedings of the 23rd inter-
national conference on Machine learning, pages 217–224, 2006.

R. Davidson and E. Flachaire. The wild bootstrap, tamed at last. Citeseer, 1999.

R. Davidson and E. Flachaire. The wild bootstrap, tamed at last. Journal of
Econometrics, 146(1):162–169, 2008.

T. J. DiCiccio and B. Efron. Bootstrap confidence intervals. Statistical Science, pages
189–212, 1996.

A. Djogbenou, S. Gonçalves, and B. Perron. Bootstrap inference in regressions with
estimated factors and serial correlation. Journal of Time Series Analysis, 36(3):
481–502, 2015.

A. A. Djogbenou, J. G. MacKinnon, and M. Ø. Nielsen. Asymptotic theory and wild
bootstrap inference with clustered errors. Journal of Econometrics, 212(2):393–412,
2019.

F. Doshi-Velez and G. Konidaris. Hidden parameter markov decision processes: A
semiparametric regression approach for discovering latent task parametrizations. In
IJCAI: proceedings of the conference, volume 2016, page 1432. NIH Public Access,
2016.

B. Efron and R. J. Tibshirani. An introduction to the Bootstrap. CRC press, 1994.

D. Ernst, G.-B. Stan, J. Goncalves, and L. Wehenkel. Clinical data based optimal sti
strategies for hiv: a reinforcement learning approach. In Proceedings of the 45th
IEEE Conference on Decision and Control, pages 667–672. IEEE, 2006.

E. Even-Dar, S. M. Kakade, and Y. Mansour. Experts in a Markov decision process.
In Advances in Neural Information Processing Systems, pages 401–408, 2005.

C. Finn, A. Rajeswaran, S. Kakade, and S. Levine. Online meta-learning. arXiv
preprint arXiv:1902.08438, 2019.

J. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and I. Mordatch.
Learning with opponent-learning awareness. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pages 122–130.
International Foundation for Autonomous Agents and Multiagent Systems, 2018.

D. J. Foster, Z. Li, T. Lykouris, K. Sridharan, and E. Tardos. Learning in games:
Robustness of fast convergence. In Advances in Neural Information Processing
Systems, pages 4734–4742, 2016.

M. Friedrich, S. Smeekes, and J.-P. Urbain. Autoregressive wild bootstrap inference
for nonparametric trends. Journal of Econometrics, 214(1):81–109, 2020.

169

P. Gajane, R. Ortner, and P. Auer. A sliding-window algorithm for Markov deci-
sion processes with arbitrarily changing rewards and transitions. arXiv preprint
arXiv:1805.10066, 2018.

A. Garcia and R. L. Smith. Solving nonstationary infinite horizon dynamic optimization
problems. Journal of Mathematical Analysis and Applications, 244(2):304–317, 2000.

J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

A. Ghate and R. L. Smith. A linear programming approach to nonstationary infinite-
horizon Markov decision processes. Operations Research, 61(2):413–425, 2013.

M. Ghavamzadeh, Y. Engel, and M. Valko. Bayesian policy gradient and actor-critic
algorithms. The Journal of Machine Learning Research, 17(1):2319–2371, 2016.

N. Gillani, A. Yuan, M. Saveski, S. Vosoughi, and D. Roy. Me, my echo chamber,
and i: introspection on social media polarization. In Proceedings of the 2018 World
Wide Web Conference, pages 823–831, 2018.

L. Godfrey and A. Tremayne. The wild bootstrap and heteroskedasticity-robust tests
for serial correlation in dynamic regression models. Computational Statistics & Data
Analysis, 49(2):377–395, 2005.

W. H. Greene. Econometric analysis. Pearson Education India, 2003.

E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for
gradient estimates in reinforcement learning. Journal of Machine Learning Research,
5(Nov):1471–1530, 2004.

Z. Guo, P. S. Thomas, and E. Brunskill. Using options and covariance testing for long
horizon off-policy policy evaluation. In Advances in Neural Information Processing
Systems, pages 2492–2501, 2017.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

H. Hachiya, M. Sugiyama, and N. Ueda. Importance-weighted least-squares proba-
bilistic classifier for covariate shift adaptation with application to human activity
recognition. Neurocomputing, 80:93–101, 2012.

P. Hall. Unusual properties of bootstrap confidence intervals in regression problems.
Probability Theory and Related Fields, 81(2):247–273, 1989.

P. Hall. The bootstrap and Edgeworth expansion. Springer Science & Business Media,
2013.

170

J. Hartford, G. Lewis, K. Leyton-Brown, and M. Taddy. Deep iv: A flexible approach
for counterfactual prediction. In International Conference on Machine Learning,
pages 1414–1423. PMLR, 2017.

D. Hennes, D. Morrill, S. Omidshafiei, R. Munos, J. Perolat, M. Lanctot, A. Gruslys,
J.-B. Lespiau, P. Parmas, E. Duenez-Guzman, et al. Neural replicator dynamics.
arXiv preprint arXiv:1906.00190, 2019.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

W. J. Hopp, J. C. Bean, and R. L. Smith. A new optimality criterion for nonhomoge-
neous Markov decision processes. Operations Research, 35(6):875–883, 1987.

A. Jacobsen, M. Schlegel, C. Linke, T. Degris, A. White, and M. White. Meta-descent
for online, continual prediction. In AAAI Conference on Artificial Intelligence, 2019.

R. Jagerman, I. Markov, and M. de Rijke. When people change their mind: Off-policy
evaluation in non-stationary recommendation environments. In Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, pages
447–455, 2019a.

R. Jagerman, I. Markov, and M. de Rijke. When people change their mind: Off-policy
evaluation in non-stationary recommendation environments. In Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, Melbourne,
VIC, Australia, February 11-15, 2019, 2019b.

N. Jiang and L. Li. Doubly robust off-policy value evaluation for reinforcement learning.
arXiv preprint arXiv:1511.03722, 2015.

N. Jiang and L. Li. Doubly robust off-policy value evaluation for reinforcement learning.
In International Conference on Machine Learning, pages 652–661. PMLR, 2016.

N. K. Jong and P. Stone. Bayesian models of nonstationary Markov decision processes.
Planning and Learning in A Priori Unknown or Dynamic Domains, page 132, 2005.

S. Jordan, Y. Chandak, D. Cohen, M. Zhang, and P. Thomas. Evaluating the
performance of reinforcement learning algorithms. In International Conference on
Machine Learning, pages 4962–4973. PMLR, 2020.

S. M. Jordan, D. Cohen, and P. S. Thomas. Using cumulative distribution based per-
formance analysis to benchmark models. In NeurIPS 2018 Workshop on Critiquing
and Correcting Trends in Machine Learning, 2018.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the International Conference on Machine Learning, 2002.

171

A. Kazerouni, M. Ghavamzadeh, Y. A. Yadkori, and B. Van Roy. Conservative
contextual linear bandits. In Advances in Neural Information Processing Systems,
pages 3910–3919, 2017.

A. Kearney, V. Veeriah, J. B. Travnik, R. S. Sutton, and P. M. Pilarski. TIDBD:
Adapting temporal-difference step-sizes through stochastic meta-descent. arXiv
preprint arXiv:1804.03334, 2018.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 2002.

K. Khetarpal, M. Riemer, I. Rish, and D. Precup. Towards continual reinforcement
learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

P. Kline and A. Santos. Higher order properties of the wild bootstrap under misspeci-
fication. Journal of Econometrics, 171(1):54–70, 2012.

R. Laroche, P. Trichelair, and R. T. d. Combes. Safe policy improvement with baseline
bootstrapping. arXiv preprint arXiv:1712.06924, 2017.

E. Lecarpentier and E. Rachelson. Non-stationary Markov decision processes, a worst-
case approach using model-based reinforcement learning. In Advances in Neural
Information Processing Systems, pages 7214–7223, 2019.

E. Lecarpentier, D. Abel, K. Asadi, Y. Jinnai, E. Rachelson, and M. L. Littman.
Lipschitz lifelong reinforcement learning. arXiv preprint arXiv:2001.05411, 2020.

N. Levine, K. Crammer, and S. Mannor. Rotting bandits. In Advances in Neural
Information Processing Systems, pages 3074–3083, 2017.

C. Li and M. de Rijke. Cascading non-stationary bandits: Online learning to rank in
the non-stationary cascade model. arXiv preprint arXiv:1905.12370, 2019.

Y. Li, A. Zhong, G. Qu, and N. Li. Online Markov decision processes with time-varying
transition probabilities and rewards. In Real-world Sequential Decision Making
workshop at ICML 2019, 2019.

R. Liu, Z. Shang, and G. Cheng. On deep instrumental variables estimate. arXiv
preprint arXiv:2004.14954, 2020.

R. Y. Liu et al. Bootstrap procedures under some non-iid models. The Annals of
Statistics, 16(4):1696–1708, 1988.

K. Lu, I. Mordatch, and P. Abbeel. Adaptive online planning for continual lifelong
learning. arXiv preprint arXiv:1912.01188, 2019.

J. G. MacKinnon. Inference based on the wild bootstrap. In Seminar presentation
given to Carleton University in September, 2012.

172

A. R. Mahmood, H. Van Hasselt, and R. S. Sutton. Weighted importance sampling for
off-policy learning with linear function approximation. In NIPS, pages 3014–3022,
2014.

M. Mahmud and S. Ramamoorthy. Learning in non-stationary mdps as transfer
learning. In Proceedings of the 2013 international conference on Autonomous agents
and multi-agent systems, pages 1259–1260. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

E. Mammen. Bootstrap and wild bootstrap for high dimensional linear models. The
Annals of Statistics, pages 255–285, 1993.

C. D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and C. Cobelli. The
UVA/PADOVA type 1 diabetes simulator: New features. Journal of Diabetes
Science and Technology, 8(1):26–34, 2014.

R. Mealing and J. L. Shapiro. Opponent modelling by sequence prediction and
lookahead in two-player games. In International Conference on Artificial Intelligence
and Soft Computing, pages 385–396. Springer, 2013.

B. Metevier, S. Giguere, S. Brockman, A. Kobren, Y. Brun, E. Brunskill, and P. S.
Thomas. Offline contextual bandits with high probability fairness guarantees. In
Advances in Neural Information Processing Systems, pages 14893–14904, 2019.

M. Mohri and S. Yang. Accelerating online convex optimization via adaptive prediction.
In Artificial Intelligence and Statistics, pages 848–856, 2016.

A. W. Moore. Efficient memory-based learning for robot control. 1990.

B. L. Moore, L. D. Pyeatt, V. Kulkarni, P. Panousis, K. Padrez, and A. G. Doufas.
Reinforcement learning for closed-loop propofol anesthesia: A study in human
volunteers. The Journal of Machine Learning Research, 15(1):655–696, 2014.

E. Moulines. On upper-confidence bound policies for non-stationary bandit problems.
arXiv preprint arXiv:0805.3415, 2008.

A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn.
Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018a.

A. Nagabandi, C. Finn, and S. Levine. Deep online learning via meta-learning:
Continual adaptation for model-based rl. arXiv preprint arXiv:1812.07671, 2018b.

M. Ornik and U. Topcu. Learning and planning for time-varying mdps using maximum
likelihood estimation. arXiv preprint arXiv:1911.12976, 2019.

S. Padakandla. A survey of reinforcement learning algorithms for dynamically varying
environments. arXiv preprint arXiv:2005.10619, 2020.

173

J. A. Parker. Endogenous regressors and instrumental variables, 2020. https:
//www.reed.edu/economics/parker/312/notes/Notes11.pdf.

J. Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversi-
tyPress, 19, 2000.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190,
2008.

M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello. Safe policy iteration. In
International Conference on Machine Learning, pages 307–315, 2013.

R. Poiani, A. Tirinzoni, and M. Restelli. Meta-reinforcement learning by tracking task
non-stationarity. arXiv preprint arXiv:2105.08834, 2021.

D. Precup. Eligibility traces for off-policy policy evaluation. Computer Science
Department Faculty Publication Series, page 80, 2000.

M. L. Puterman. Markov decision processes. Handbooks in operations research and
management science, 2:331–434, 1990.

A. Rajchman. Zaostrzone prawo wielkich liczb. Mathesis Polska, 6:145–161, 1932.

A. Rakhlin and K. Sridharan. Online learning with predictable sequences. arXiv
preprint arXiv:1208.3728, 2013.

B. Ravindran and A. G. Barto. Approximate homomorphisms: A framework for
non-exact minimization in Markov decision processes. In Proceedings of the Fifth
International Conference on Knowledge Based Computer Systems, 2004.

M. B. Ring. Continual learning in reinforcement environments. PhD thesis, University
of Texas at Austin, Texas 78712, 1994.

M. J. Robbins, P. R. Jenkins, N. D. Bastian, and B. J. Lunday. Approximate dynamic
programming for the aeromedical evacuation dispatching problem: Value function
approximation utilizing multiple level aggregation. Omega, 91:102020, 2020.

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in
observational studies for causal effects. Biometrika, 70(1):41–55, 1983.

S. Saria. Individualized sepsis treatment using reinforcement learning. Nature medicine,
24(11):1641–1642, 2018.

J. Schmidhuber. A general method for incremental self-improvement and multi-agent
learning. In Evolutionary Computation: Theory and Applications, pages 81–123.
World Scientific, 1999.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

174

https://www.reed.edu/economics/parker/312/notes/Notes11.pdf
https://www.reed.edu/economics/parker/312/notes/Notes11.pdf

J. Seznec, A. Locatelli, A. Carpentier, A. Lazaric, and M. Valko. Rotting bandits are
no harder than stochastic ones. arXiv preprint arXiv:1811.11043, 2018.

S. Shalev-Shwartz et al. Online learning and online convex optimization. Foundations
and Trends in Machine Learning, 4(2):107–194, 2012.

S. Singh, M. Kearns, and Y. Mansour. Nash convergence of gradient dynamics in
general-sum games. In Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence, pages 541–548. Morgan Kaufmann Publishers Inc., 2000.

S. Sinha and A. Ghate. Policy iteration for robust nonstationary Markov decision
processes. Optimization Letters, 10(8):1613–1628, 2016.

G. Strang, G. Strang, G. Strang, and G. Strang. Introduction to linear algebra,
volume 3. Wellesley-Cambridge Press Wellesley, MA, 1993.

Student. The probable error of a mean. Biometrika, pages 1–25, 1908.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press,
Cambridge, MA, 2 edition, 2018a.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018b.

A. A. Taiga, W. Fedus, M. C. Machado, A. Courville, and M. G. Bellemare. On
bonus-based exploration methods in the arcade learning environment. arXiv preprint
arXiv:2109.11052, 2021.

G. Theocharous, P. S. Thomas, and M. Ghavamzadeh. Personalized ad recommenda-
tion systems for life-time value optimization with guarantees. In Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

G. Theocharous, Y. Chandak, P. S. Thomas, and F. de Nijs. Reinforcement learning
for strategic recommendations. arXiv preprint arXiv:2009.07346, 2020.

P. Thomas and E. Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In International Conference on Machine Learning, pages 2139–2148, 2016.

P. Thomas, G. Theocharous, and M. Ghavamzadeh. High confidence policy im-
provement. In International Conference on Machine Learning, pages 2380–2388,
2015a.

P. Thomas, G. Theocharous, and M. Ghavamzadeh. High-confidence off-policy evalua-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015b.

P. S. Thomas. Safe reinforcement learning. PhD thesis, University of Massachusetts
Libraries, 2015.

175

P. S. Thomas, G. Theocharous, and M. Ghavamzadeh. High-confidence off-policy
evaluation. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015c.

P. S. Thomas, G. Theocharous, M. Ghavamzadeh, I. Durugkar, and E. Brunskill.
Predictive off-policy policy evaluation for nonstationary decision problems, with
applications to digital marketing. In AAAI, pages 4740–4745, 2017.

P. S. Thomas, B. Castro da Silva, A. G. Barto, S. Giguere, Y. Brun, and E. Brunskill.
Preventing undesirable behavior of intelligent machines. Science vol. 366, pages
999–1004, 2019a.

P. S. Thomas, B. C. da Silva, A. G. Barto, S. Giguere, Y. Brun, and E. Brunskill.
Preventing undesirable behavior of intelligent machines. Science, 366(6468):999–
1004, 2019b.

S. Thrun. Lifelong learning algorithms. In Learning to learn, pages 181–209. Springer,
1998.

N. Wagener, C.-A. Cheng, J. Sacks, and B. Boots. An online learning approach to
model predictive control. arXiv preprint arXiv:1902.08967, 2019.

J.-K. Wang, X. Li, and P. Li. Optimistic adaptive acceleration for optimization. arXiv
preprint arXiv:1903.01435, 2019a.

L. Wang, H. Zhou, B. Li, L. R. Varshney, and Z. Zhao. Be aware of non-stationarity:
Nearly optimal algorithms for piecewise-stationary cascading bandits. arXiv preprint
arXiv:1909.05886, 2019b.

W. Z. Wang, A. Shih, A. Xie, and D. Sadigh. Influencing towards stable multi-agent
interactions. arXiv preprint arXiv:2110.08229, 2021.

Y. Wang and M. F. Bellemare. Lagged variables as instruments, 2019.

L. Wasserman. All of statistics: A concise course in statistical inference. Springer
Science & Business Media, 2013.

W. Whitt. Approximations of dynamic programs, i. Mathematics of Operations
Research, 3(3):231–243, 1978.

V. Wieland and M. Wolters. Forecasting and policy making. In Handbook of Economic
Forecasting, volume 2, pages 239–325. Elsevier, 2013.

A. S. Wilkins. To lag or not to lag?: Re-evaluating the use of lagged dependent variables
in regression analysis. Political Science Research and Methods, 6(2):393–411, 2018.

C.-F. J. Wu et al. Jackknife, bootstrap and other resampling methods in regression
analysis. The Annals of Statistics, 14(4):1261–1295, 1986.

176

D. Wu, X. Chen, X. Yang, H. Wang, Q. Tan, X. Zhang, J. Xu, and K. Gai. Budget
constrained bidding by model-free reinforcement learning in display advertising.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pages 1443–1451, 2018.

A. Xie, J. Harrison, and C. Finn. Deep reinforcement learning amidst lifelong non-
stationarity. arXiv preprint arXiv:2006.10701, 2020a.

A. Xie, D. P. Losey, R. Tolsma, C. Finn, and D. Sadigh. Learning latent representations
to influence multi-agent interaction. arXiv preprint arXiv:2011.06619, 2020b.

J. Xie. Simglucose v0.2.1 (2018), 2019. URL https://github.com/jxx123/
simglucose.

T. Xie, Y. Ma, and Y.-X. Wang. Towards optimal off-policy evaluation for reinforcement
learning with marginalized importance sampling. arXiv preprint arXiv:1906.03393,
2019.

L. Xu, Y. Chen, S. Srinivasan, N. de Freitas, A. Doucet, and A. Gretton. Learning
deep features in instrumental variable regression. arXiv preprint arXiv:2010.07154,
2020.

S. Yang and M. Mohri. Optimistic bandit convex optimization. In Advances in Neural
Information Processing Systems, pages 2297–2305, 2016.

C. Yu, J. Liu, and S. Nemati. Reinforcement learning in healthcare: A survey.
arXiv:1908.08796, 2019.

J. Y. Yu and S. Mannor. Online learning in Markov decision processes with arbitrarily
changing rewards and transitions. In 2009 International Conference on Game
Theory for Networks, pages 314–322. IEEE, 2009.

C. Yuan, Y. Chandak, S. Giguere, P. S. Thomas, and S. Niekum. SOPE: Spectrum of
off-policy estimators. Advances in Neural Information Processing Systems, 34, 2021.

C. Zhang and V. Lesser. Multi-agent learning with policy prediction. In Twenty-fourth
AAAI conference on artificial intelligence, 2010.

J. Zhang and K. Cho. Query-efficient imitation learning for end-to-end autonomous
driving. arXiv preprint arXiv:1605.06450, 2016.

177

https://github.com/jxx123/simglucose
https://github.com/jxx123/simglucose

	Abstract
	List of Tables
	List of Figures
	Introduction
	Contributions
	Layout

	Background and Related Work
	Roots of the Problem
	Partially Observable Markov Decision Processes
	Non-stationary Decision Processes
	Stationarity
	Passive Non-stationarity
	Active (Action-dependent) and Hybrid Non-stationarity

	Related Work
	(Stationary) POMDPs
	Algorithmic Non-stationarity in Stationary Domains
	Meta and Continual Learning
	Multi-Agent Systems and Games
	Hidden-Parameter MDP
	Tracking
	One-step Decision Making
	Operations Research

	Optimizing for the Future
	Notation
	Problem Statement
	Background and Preliminaries
	Related Work
	Per-decision Importance Sampling
	Weighted Importance Sampling

	Optimizing for the Future
	Forecasting Future Performance
	Differentiating Forecasted Future Performance
	Algorithm
	Understanding the Behavior of Prognosticator
	Mitigating Variance

	Generalizing to the Stationary Setting
	Empirical Analysis
	Environments
	Algorithms Compared
	Hyper-parameters
	Results
	Computational Complexity (Memory and Time)
	Ablation Study
	Performance Over Time

	Conclusion
	Limitations and Future Work
	Proofs
	Finite Sample Properties
	Large Sample Properties

	Towards Safe Policy Improvement
	Notation
	Problem Statement
	Background and Preliminaries
	Related Work
	Wild Bootstrap

	Hardness of the Problem
	An Alternate Assumption

	SPIN: Safe Policy Improvement for Non-Stationary Settings
	Performance Estimation
	Safety Test
	Candidate Policy Search
	Data-Splitting:

	Estimating Confidence Intervals for Future Performance
	Point Estimate of Future Performance
	Confidence Intervals for Future Performance
	Extended Discussion on Bootstrap
	Why Not Use Other Bootstrap Methods?
	Why Not Use Standard t-test?

	Algorithm
	Empirical Analysis
	Domains
	Baseline
	Hyper-parameters
	Results
	Discussion on Results

	Conclusion
	Limitations and Future Work
	Proofs
	Hardness Results
	Uncertainty Estimation

	Action-Dependent Non-stationarity
	Notation
	Problem Statement:
	Related Work
	Understanding Structural Assumptions
	Idea in a Nutshell
	Model-Free Policy Evaluation
	Counterfactual Reasoning
	Double Counterfactual Reasoning
	Importance Weighted IV-Regression

	Empirical Analysis
	Environments
	Algorithms Compared
	Implementation and Hyper-parameters
	Results for Active/Hybrid Non-stationarity
	Single Run
	Summary Plots

	Results for Passive Non-stationarity
	Single Run
	Summary Plots

	Ablation Study

	Conclusion
	Limitations and Future Work
	Proofs
	Double Counterfactual Reasoning
	Importance-Weighted IV-Regression

	Conclusion and Future Work
	Future Work

	Bibliography

